Math 4160 - Quiz 3

Name:

- 1. Write the definition of a linear map.
- 2. Prove the following are linear maps or prove they are not.
 - (a) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by T(x, y) = (ax + by, cx + dy) where $a, b, c, d \in \mathbb{R}$.
 - (b) Let $T : \mathbb{R}^3 \to \mathbb{R}$ be defined by T(x, y, z) = x y + 3z + 2.
 - (c) Let $L : \mathbb{F}^{\infty} \to \mathbb{F}^{\infty}$ be defined by $L(x_1, x_2, x_2, x_3, \ldots) = (x_2, x_3, x_4, \ldots)$.
- 3. Prove $\mathcal{L}(V, W)$ is a vector space.
- 4. Compute the Null space and range for the following.
 - (a) Let $T : \mathbb{R}^3 \to \mathbb{R}$ be defined by T(x, y, z) = x y + 3z.
 - (b) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by T(x, y) = (2x, y 3x).
 - (c) Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be defined by T(x, y, z) = (x + y, 2y 2x).
- 5. For the linear maps defined in Quesion 4, compute Rank, Nulllity and the dimension of V, where V is the domain.
- 6. Prove the Null(T) is a vector space.
- 7. Asume $T \in \mathcal{L}(V, W)$. Complete the following:
 - T is injective if and only if
 - T is surjective if and only if
 - If T is injective and surjective we say T is a bijection. When T s a bijection we say T is an ______ from V to W and we say that V and W are
- 8. State the Fundamental Theorem of Linear Algebra.
- 9. For the linear maps defined in Question 4 compute their matrices. Use the standard bases.
- 10. Define $T : \mathbb{R}^2 \to \mathbb{R}^2$ by Tv = v.
 - (a) Using $B_1 = (1,2), (1,3)$ as the basis for the domain and $B_2 = (1,0), (2,2)$ as the basis for the codomain, compute the matrix for T. Call this matrix M_1 .

- (b) Switch the roles of B_1 and B_2 , compute the matrix for T. Call this matrix M_2 .
- (c) Compute M_1M_2 and M_2M_1 .
- (d) What does Question 10c tell us about T?