Name:

- 1. Let $a, b, c, d \in \mathbb{Z}$ with $b \neq 0$. Show if a|b and b|c then a|c.
- 2. For the following pairs of numbers, find their gcd and and find a linear combination of the numbers equal to their gcd: a = 144 and b = 252 using the algorithm from class.
- 3. Let (G, *, e) be a group prove If $a^2 = e$ for all $a \in G$ then G is Abelian.
- 4. For the group $(\mathbb{Z}, +)$ prove, using the 2-step subgroup test, that $H = \{4n : n \in \mathbb{Z}\}$ is a subgroup.
- 5. For the group (Z_9^*, \cdot) list and compute the orders of its elements.
- 6. The groups $(Z_6, +)$ and (Z_9^*, \cdot) are isopmorphic.
 - (a) Define an isomorphism $f: Z_6 \to Z_9^*$. Define the isomorphism clearly. No need to show it is a bijection.
 - (b) Verify your isomorphism works for the following:

$$f(2+3) = f(2) \cdot f(3)$$
 and $f(4+4) = f(4) \cdot f(4)$

7. For the following algebraic structures write the operation tables. The structure is not a group. State which property fails and how.

 (D, \circ) a subset of S_3 where

$$D = \left\{ \left(\begin{array}{rrr} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array} \right), \left(\begin{array}{rrr} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array} \right), \left(\begin{array}{rrr} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array} \right), \left(\begin{array}{rrr} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array} \right) \right\}$$