- 1. Prove If the sup(A) exists then sup(A) = -inf(-A).
- 2. Prove the following: Let A be a nonempty subset of \mathbb{R} and let $\alpha = \sup(A)$. If $\varepsilon > 0$ then there exists an $x \in A$ so that

$$\alpha - \varepsilon < x \le \alpha.$$

3. Prove either

Name:

- (a) If $a_n \to a$ and $b_n \to b$ then $\lim_{n\to\infty} a_n b_n = ab$, or
- (b) If (a_n) is convergent then (a_n) is bounded.

4. $\lim_{n \to \infty} \frac{n+1}{3n+5} = \frac{1}{3}$

5. For the following questions use

$$a_1 = 6$$
, and $a_n = \sqrt{3 + a_{n-1}}$

- (a) Prove (a_n) is monotone.
- (b) Prove (a_n) is bounded.
- (c) Use the MCT (and state the MCT) to prove (a_n) converges.
- (d) What is the limit?
- 6. Find the limit and prove it for the following using the $\varepsilon \delta$ definition for the limit

$$\lim_{x \to -2} x^2 + 2x$$

7. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2 - 1$. Prove f is continuous from the definition.

8. Let $f : \mathbb{R} \to \mathbb{R}$ satisfy $|f(x) - f(y)| \le |x - y|^p$ where $p \ge 1$ for all $x, y \in \mathbb{R}$. Prove f is uniformly continuous.