MATH 5320 Test 2: Practice

1 Continuity

1. Show f(x) = 2241 is continuous at = 3 (using the ¢ — § definition).

)
2. Show f(x) = 22 + 1 is continuous where f : R — R (using the ¢ — §
definition).

3. Show f(z) = 22+ 1 is uniformly continuous at f : [~10,7] — R (using
the € — ¢ definition).

4. State the IVT and the EVT.

5. Let f : R — R be continuous and let range(f) C Q. Prove f(z) is
constant.

6. Let f : R — R be continuous and injective. Prove f(x) is strictly
monotone.

2 Differentiability

7. Compute the derivatives of the following using the definition:
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8. Prove if f(z) and g(x) are differentiable at = ¢ then [f(c)g(c)] =
f'(e)g(e) + f(e)g ().

9. Use the product rule to show



10.
11.

12.
13.
14.

15.

16.
17.

18.

19.

Prove if f is differentiable at x = ¢ then f is continuous at x = c.

Prove the following function is continuous but not differentiable. f(x) =
x? <1
3r—2 xz>1"

Prove if |f(x)| < 22 for all z € R then f’(0) = 0.

State the MVT.

Find all values of ¢ from the MVT for the following
(a) f(z) =322 +5z+7;[1,7]

(b) f(z) =322+ 52 +7; [a,b]
(c) f(x) = [xf; [1,7]
(d) f(x) = |af; [-1,7]

Prove If f : R — R is differentiable and there is some M € R so that
|f'(x)] < M for all z € R then f is uniformly continuous. Hint: I used
the MVT.

State Taylor’s Theorem

Use Taylor’s Theorem (n=3) to find a polynomial to approximate the
following functions at a = 0. Bound the remainder term for values in
the interval [0, 1].

(a) f(x)=sin(2x).
(b) f(z) = cos(3z).
(c) flz)=e.

Let f : R — R have first and second derivatives. If f(0) =0, f/(0) =0
and f”(x) > 2 for all z € R then f(z) > 2 for all z > 0. Hint: I used
the Taylor’s Theorem.

3 Integration

Prove (using Riemann Sums) that

w={ 55

is integrable over the interval [0,3]. What is that integral?
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Let f(z) = 2241, [a,b] = [1,4] and let P = {1,2,3,3.5,3.7,4} be a ar-
tition for [1,4] and let S = {1,2.2,3.1,3.6,4} be a sampling. Compute
RS(f,P,S), US(f,P) and LS(f,P).

Assume f : [a,b] — R is integrable. Show if f(z) > 0 then [* f(z) > 0.
Prove using the definition of the integral.
Assume f : [a,b] — R is integrable. Show if f;f(x) =0and 0 <

g(z) < f(z) then g(x) is integrable and f;g(x) = 0. Prove using the
definition of the integral.
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State the Box Sums Criteria (the BSC).

Prove if f(x) is continuous then f(x) is integrable (use the BS Crite-
ria).

Prove if f(x) is monotone then f(z) is integrable (use the BS Criteria).
5.1:1,2,3,4,7%,14

5.3:4,5,6

5.4:9, 10

State the FTC v0, the FTC v1, the FTC v2 and the MVTI.

Let f,(x) = 2™ where n € N.

(a) Graph f,(z) on the interval [0, 1] for several values of n until you
see the pattern. Explain the pattern.

(b) Compute fol I
1

(c) Find the limit lim fn-

n—oo 0
(d) What does the MVTI say about
i. f(z)=x2+1 over [a,b] = [-1,3].

ii. f(z) = |z| over [a,b] = [-3,3].



