1 Sups

- 1. Definitions of sup, inf, upper bound, lower bound, bounded away
- 2. Prove If the sup(A) and the sup(B) exist then sup(A) + sup(B) = sup(A + B).
- 3. Prove If the sup(A) exists then $\sup(A) = -\inf(-A)$.
- 4. The Lemma its statement and proof
- 5. Let $S = \{\frac{1}{1+x^2} : x \in \mathbb{R}\}$. Prove or disprove S is bounded away from zero.
- 6. Let $S = \{1 + x^2 : x \in \mathbb{R}\}$. Prove or disprove S is bounded away from zero.
- 7. Prove $\mathbb N$ is unbounded
- 8. Prove (and be able to state) squeeze in.
- 9. Let $x \in \mathbb{R}$ so that $x \ge 0$, Prove if for all $\varepsilon > 0$ we have $x < \varepsilon$ then x = 0.

2 Limits

- 10. Definitions of $a_n \to a$, $a_n \to \infty$, $a_n \to -\infty$
- 11. Prove the following:
 - (a) $\lim_{n \to \infty} k = k$.
 - (b) $\lim_{n\to\infty} ka_n = ka$.
 - (c) $\lim_{n\to\infty} a_n + b_n = a + b$.
 - (d) $\lim_{n \to \infty} a_n b_n = ab.$
 - (e) If a_n converges then a_n is bounded.
 - (f) If a_n converges then the limit is unique.
 - (g) If $a_n \to 0$ and (b_n) is bounded then $a_n b_n \to 0$.
 - (h) If (a_n) is bounded then $(\frac{1}{a_n})$ is bounded away from zero.
 - (i) If (a_n) is bounded away from zero then $(\frac{1}{a_n})$ is bounded.
- 12. Prove (use the $\epsilon = N$ definition).

- (a) $\lim_{n \to \infty} \frac{n}{n+3} = 1$
- (b) $\lim_{n \to \infty} \frac{n^2 + \sin(n)}{n^2 + 3 \cos(n)} = 1$
- (c) $\lim_{n \to \infty} \frac{n+4}{n^2+3} = 0$
- (d) $\lim_{n\to\infty} \sqrt{n} = \infty$
- 13. For the following questions use

$$a_1 = 6$$
, and $a_n = \sqrt{3 + a_{n-1}}$

- (a) Prove (a_n) is monotone.
- (b) Prove (a_n) is bounded.
- (c) Use the MCT (and state the MCT) to prove (a_n) converges.
- (d) What is the limit?
- 14. For the following questions use

$$a_1 = 3$$
, and $a_n = 1 + \frac{1}{2 + \frac{1}{1 + a_{n-1}}}$

- (a) Prove (a_n) is monotone.
- (b) Prove (a_n) is bounded.
- (c) Use the MCT (and state the MCT) to prove (a_n) converges.
- (d) What is the limit?

3 Subsequences

- 15. State the Bolzano-Weiersrtass Theorem.
- 16. Let (q_n) be an enumeration of the rationals. Prove that there is a subsequence of (q_n) that converges to 3.

4 Limits of functions

- 17. State the SCL
- 18. State and Prove the Squeeze Theorem.

- 19. Find the limit and prove it for the following using the $\varepsilon \delta$ definition for the limit
 - (a) $\lim_{x\to 3} x^2 + 2$
 - (b) $\lim_{x \to -2} \frac{x}{x+11}$
 - (c) $\lim_{x\to\infty} \ln(x)$

5 Continuity

- 20. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2 2$. Prove
 - (a) f is continuous at x = -2 from the definition
 - (b) f is continuous from the definition
 - (c) f is **not** uniformly continuous.
- 21. Define $f: [-20, 20] \to \mathbb{R}$ by $f(x) = x^2 2$. Prove
 - (a) f is continuous at x = -2 from the definition
 - (b) f is continuous from the definition
 - (c) f is uniformly continuous.
- 22. Let $f : \mathbb{R} \to \mathbb{R}$ satisfy
 - f(x+y) = f(x) + f(y), and
 - f(kx) = kf(x)

for any $k \in \mathbb{R}$ and $x, y \in \mathbb{R}$. Prove

- (a) f is continuous from the definition
- (b) f is uniformly continuous.