MATH 5320 Final Exam: Practice

1 Other Stuff

- 1. Test 1
- $2. \ {\rm Test} \ 2$
- 3. Test 2 Review

2 Sequences

- 4. Prove using the definition that
 - (a) $\lim_{n \to \infty} \frac{k}{n} = 0$ for any $k \in \mathbb{R}$ (b) $\lim_{n \to \infty} \frac{3n+1}{n+2} = 3$
- 5. Assume $\lim_{n \to \infty} a_n = a$ and $\lim_{n \to \infty} b_n = b$. Show $\lim_{n \to \infty} a_n b_n = ab$.
- 6. Assume $\lim_{n \to \infty} a_n = 0$ and and assume the sequence (b_n) is bounded. Show

$$\lim_{n \to \infty} a_n b_n = 0.$$

- 7. Assume $\lim_{n \to \infty} a_n = 0$ and and assume the sequence (b_n) is not bounded. Show $\lim_{n \to \infty} a_n b_n$ is not necessarily zero. That is find (a_n) and (b_n) where $a_n \to 0$ but $a_n b_n \not\to 0$.
- 8. Prove If (a_n) is convergent then (a_n) is bounded.
- 9. Use the Monotone Convergence Theorem to show (a_n) as described below has a limit. Compute that limit.
 - (a) $a_1 = 1, a_{n+1} = 1 \frac{1}{a_n+2}$ (b) $a_1 = 1, a_{n+1} = \sqrt{a_n+1}$
- 10. Show the following sequences diverge to infinity.
 - (a) $\lim_{n\to\infty} 3n-1 = \infty$ (b) $\lim_{n\to\infty} \frac{n+5}{\sqrt{n+1}} = \infty$

3 Limits of Functions

11. prove using the $\varepsilon-\delta$ definition of a limit

$$\lim_{x \to -2} 3x - 1 = -7 \text{ and } \lim_{x \to 3} x^3 - 8 = 19 \text{ and } \lim_{x \to -2} \frac{1}{1 + x^2} = \frac{1}{5}$$
$$\lim_{x \to 3} x^2 - 2x = 3 \text{ and } \lim_{x \to 1} \sqrt{x + 3} = 2$$

- 12. If $\lim_{x\to c} f(x) = F$ and $\lim_{x\to c} g(x) = G$ then show $\lim_{x\to c} f(x)g(x) = FG$.
- 13. If $\lim_{x\to c} f(x) = F$ and $\lim_{x\to c} g(x) = G$ then show $\lim_{x\to c} f(x) + g(x) = F + G$.
- 14. If $\lim_{x\to c} f(x) = F$ and let $k \in \mathbb{R}$ then show $\lim_{x\to c} kf(x) = kF$.