Name:_____

1. Prove $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.

2. Define the relation on \mathbb{Z} by

$$x\mathcal{R}y \Leftrightarrow 3|5x+y$$

Prove \mathcal{R} is transitive.

3. Define $f: (0,\infty) \to (0,\infty)$ by $f(x) = \frac{1}{x}$. Is f injective, surjective or bijective? Prove or disprove.

4. Let $f: A \to B$ and $g: B \to C$. Prove: If f and g are surjective then $g \circ f$ is surjective.

5. For the following permutaions:

 $\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}, \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \text{ and } \sigma_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$ compute:

(a)
$$\sigma_1^3$$

(b)
$$\sigma_1^{-1}$$

6. Prove $(1,2) \sim (9,13)$

7. Prove the set of irrationals is uncountable.