Math 3520 - Final Exam Review

Prepare

- Test 1
- $\bullet~{\rm Test}~2$
- Test 2 Review
- and this Review

1 New Stuff

- 1. Define $\lim_{x \to c} f(x) = L$
- 2. Compute and prove the following limits
 - (a) $\lim_{x \to 2} 3x + 2$ (b) $\lim_{x \to -3} x^2 + 1$ (c) $\lim_{x \to -1} 2x^2$ (d) $\lim_{x \to 2} x^3$ (e) $\lim_{x \to -2} x^3 + 1$

2 Group Theory

- 3. Definition of a subgroup and of an isomorphism.
- 4. For the group $(\mathbb{Z}, +)$ prove, using the 2-step subspace test, that $H = \{3n : n \in \mathbb{Z}\}$ is a subgroup.
- 5. For the group $(\mathbb{Z}, +)$ Show $H = \{2n + 1 : n \in \mathbb{Z}\}$ is not a subgroup.
- 6. For the group (S_3, \circ) Show

$$H = \left\{ \left(\begin{array}{rrrr} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array} \right), \left(\begin{array}{rrrr} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array} \right), \left(\begin{array}{rrrr} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array} \right) \right\}$$

is not a subgroup of S_3 .

- 7. Let G be any group and let g be a fixed element of G then prove, using the 2-step subspace test, that $H = \{gag^{-1} | a \in G\}$ is a subgroup.
- 8. Let G be any group then prove, using the 2-step subspace test, that $H = \{a \in G | ag = ga \forall g \in G\}$ is a subgroup.
- 9. For the groups $G_1 = (\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2, +)$ and $G_2 = (\mathbb{Z}_8, +)$
 - (a) Find the orders of the elements (1, 1, 1) and (1, 0, 1) in G_1 and the orders of the elements 1, 2, 3 in G_2 ?
 - (b) Are any of the above elements generators for their respective groups?
 - (c) Why aren't the groups isomorphic?
- 10. For the groups $G_1 = (\mathbb{Z}_9^*, +)$ and $G_2 = (Z_6, +)$
 - (a) Find the orders of three different non identity elements in G_1 and the orders of the elements 1, 2, 3 in G_2 ?
 - (b) Are any of the above elements generators for their respective groups?
 - (c) The two groups are isomorphic. Find the isomorphism $f: G_1 \to G_2$.
- 11. Note that (G, \cdot) is a group where $G = \{2^n : n \in \mathbb{Z}\}$ and \cdot is regular multiplication. Prove Axioms G_1 and G_3 for (G, \cdot) .
- 12. Note that (G, \cdot) is a group where $G = \{2^n : n \in \mathbb{Z}\}$ and \cdot is regular multiplication. Show $G \cong \mathbb{Z}$ where \mathbb{Z} is a group over addition. I used the isomorphism $f : \mathbb{Z} \to G$. We need to prove f preserves the operation and that f is a bijection.

3 Functions

- 13. Define $f : \{1, 2, 3\} \to \{4, 7, 9\}$ by f(1) = 4, f(2) = 4 and f(3) = 9.
 - (a) Is f injective, surjective or bijective? Compute
 - (b) Compute $f(\{1,2\}), f^{-1}(\{1,4\})$ and $f \circ f^{-1}(\{4,9\})$.
- 14. Define $f: (-\infty, 0) \to [0, \infty)$ by $f(x) = x^2$.
 - (a) Is f injective, surjective or bijective? Prove or disprove.

- (b) Compute $f((-2,2)), f^{-1}((-2,2)), f^{-1} \circ f(\{4,9\})$ and $f \circ f^{-1}(\{4,9\})$.
- 15. Define $f : \mathbb{R} \setminus \{2\} \to \mathbb{R} \setminus \{1\}$ by $f(x) = \frac{x}{x-2}$. Is f injective, surjective or bijective? Prove or disprove.
- 16. Let $f: A \to B$ and $g: B \to C$. Prove the following.
 - (a) If f and g are injective then $g \circ f$ is injective.
 - (b) If f and g are surjective then $g \circ f$ is surjective.

4 Cardinality

- 17. Define cardinality. That is $A \sim B$ if and only if ...
- 18. Know \sim is an equivalence relation and what that means.
- 19. Show $\mathbb{N}\sim 2\mathbb{N}$
- 20. Show $\mathbb{N} \sim \mathbb{Z}$
- 21. Let A = [0, 2] and B = [-1, 6]. Show $f : A \to B$ given by $f(x) = \frac{7}{2}x 1$ is a bijection. What does this tell uas about the sets A and B?