Math 3520 - Quiz 7

Name:_

Type up your answers in complete English.

- 1. Prove or disprove G1, G2, G3 and G4 for the following algebraic structure (S, \otimes) where $S = \mathbb{Z}$ and $a \otimes b = 2ab - a - b + 1$. Hint there is compute $a \otimes 1$ and $1 \otimes a$.
- 2. Write down the addition table for $(\mathbb{Z}_6, +)$ and the multiplication tables for $(\mathbb{Z}_7^*, *)$. Compare the two tables. make a correspondence between the tables that preserves the operation.
- 3. As we did in class define a group to be the symmetries of the hexagon. Describe your group.
- 4. Define $S = \{ \sigma \in S_4 : \sigma^2 = e \}$. Show S along with composition is a group. Prove it is an abelian group.
- 5. State and prove the cancellation laws.
- 6. Prove $A = \{2^n : n \in \mathbb{Z}\}$ is a subgroup of (\mathbb{Q}^*, \cdot) .
- 7. Prove $(\mathbb{Z}_6, +)$ and $(\mathbb{Z}_7^*, *)$ are isomorphic. You must define an isomorphism, ϕ and prove ϕ is an isomorphism.