Name:

- 1. Let $V = \{(a, b) \in \mathbb{R}^2 : b \neq 0\}$. And define the two operations
 - \oplus : $(a,b) \oplus (c,d) = (ad + bc, bd)$
 - \odot : $k \odot (a, b) = (ka, b)$
 - (a) Show (V, \oplus, \odot) satisfies Axiom 1.
 - (b) Show (V, \oplus, \odot) satisfies Axiom 2.
 - (c) Does (V, \oplus, \odot) satisfies Axiom 4? Why or why not?
- 2. Let $W = \{(a, b, c) \in \mathbb{R}^3 : \text{ where } a + b + c = 1\}.$
 - (a) Use the two step subspace test to show $(W, +, \cdot)$ is a subspace.
 - (b) What geometric shape is W? Hint I gave it in standard form.
 - (c) Give me the parametric for the geometric object defined in the set W.
- 3. Let $S = \{(1, 2, -1, 1), (0, 0, 1, 2), (1, 0, -1, 0)\}.$
 - (a) Is S linearly independent?
 - (b) Is $(2, 2, 2, 1) \in \text{Span}(S)$? If yes what is a linear combination of the vectors in S that equals (2, 2, 2, 1)?
 - (c) Is $(5, 6, -8, -3) \in \text{Span}(S)$? If yes what is a linear combination of the vectors in S that equals (5, 6, -8, -3)?
 - (d) Does S span \mathbb{R}^4 ?
- 4. Let $S = \{(1, 2, 1), (0, 1, 2), (0, -1, 0)\}.$
 - (a) Is S linearly independent? (There is an easy test for this problem).
 - (b) Is $(2,2,2) \in \text{Span}(S)$? If yes what is a linear combination of the vectors in S that equals (2,2,2)?
 - (c) Does S span \mathbb{R}^3 ?
- 5. Let $B = \{(1, 2, 1), (0, 1, 2), (0, -1, 0)\}.$
 - (a) Is B a basis for \mathbb{R}^3

- (b) Write the vector (1, 0, -1) relative to the basis B.
- (c) Write the vector (a, b, c) relative to the basis B.
- (d) Find the change of basis matrix from the standard basis to the basis B. (we called it $P_{\text{STANDARD}\to B}$ in class).
- 6. For the following system of linear equations.

- (a) Find the solution set.
- (b) Find a basis for the solution set.
- (c) What is the dimension of that solution set?
- 7. For the following subspace of P_3

$$W = \{a + bx + cx^{2} + dx^{3} : a = -c \text{ and } b = c + d\}$$

- (a) Find a basis for W.
- (b) What is the dimension of that solution set?