Name:_

- 1. Define the following
 - (a) $f: A \to B$ is injective \Leftrightarrow
 - (b) $\alpha = \inf(A) \Leftrightarrow$
 - (c) $a_n \to \infty \Leftrightarrow$
- 2. Prove $\left(\frac{n^2+1}{3n^2+1}\right)$ onverges. Use the εN definition.
- 3. Prove $\lim_{n\to\infty} \frac{n^2}{n+1} = \infty$. Use the M N definition.
- 4. Prove **one** of the following.
 - If $a_n \to a$ and $b_n \to b$ then $a_n + b_n \to a + b$
 - If $a_n \to 0$ and (b_n) is bounded then $a_n b_n \to 0$.
- 5. Do **both** of the following.
 - (a) Show the sets $(0,1) \sim (-3,2)$. Be certain to prove your function is bijective.
 - (b) Show the sets $\mathbb{N} \not\sim \mathbb{R}$. For this problem you need only define an appropriate bijection. You do not need to prove it is a bijection.
- 6. Show the following function is convergent (quote the appropriate theorem). And find its limit.

$$a_1 = 1$$
 and $a_{n+1} = \sqrt{3a_n + 4}$

7. Prove.

If $a_n \to a$ and $b_n \to b$ then $a_n b_n \to ab$.