MATH 5320 Test 1: Practice

1. KNOW THE DEFINITIONS

- (1) |A| = |B| or $A \sim B$
- (2) $f: A \to B$ is injective.
- (3) $f: A \to B$ is onto.
- (4) $f: A \to B$ is bijective.
- (5) upper bound, lower bound, sup, inf
- (6) $a_n \to a \text{ or } a_n \to \infty$

2. Some good facts to know

- (1) the compteteness axiom
- (2) \mathbb{N} is unbounded
- (3) Squeeze in
- (4) Archimedean Property
- (5) the density of \mathbb{Q} in \mathbb{R}
- (6) Weieretrass (Monotone Convergent Theorem)

3. CARDINALITY

- (1) Let A, B and C be disjoint sets. Show if $A \sim B$ and $B \sim C$ then $A \sim C$.
- (2) Let A, B and C be disjoint sets. Show if $A \sim B$ then $A \cup C \sim B \cup C$.
- (3) Let A_n be a countable set for each $n \in \mathbb{N}$. Prove $\cup A_n$ is countable.
- (4) Show the sets $\{\frac{1}{n} : n \in \mathbb{N}\} \sim \{\frac{1}{n+1} : n \in \mathbb{N}\}.$
- (5) Show the sets $[a, b] \sim [0, 1]$ where a < b.
- (6) Show the sets $(0, \infty) \sim (0, 1)$.
- (7) Show the sets $(-\infty, \infty) \sim (0, 1)$.
- (8) Show the sets $\mathbb{N} \sim \mathbb{Z}$.
- (9) Show the sets $\mathbb{N} \sim \mathbb{Q}$.
- (10) Show the sets $\mathbb{N} \not\sim \mathbb{R}$.

4. Functions and Suprema

- (1) Let the set A be nonempty and bounded above and let $\alpha = \sup(A)$. Show for all $\varepsilon > 0$ there is some $x \in A$ so that $\alpha - \varepsilon < x \leq \alpha$.
- (2) Let the set A be nonempty and bounded above and define $B = 3A = \{3a : a \in A\}$. Prove $\sup(B) = 3\sup(A)$
- (3) Either prove or disprove that the functions defined below are injective or surjective.
 - (a) Let $f: (0, \infty) \to (0, \infty)$, where $f(x) = x^2$.
 - (b) Let $f : \mathbb{R} \to \mathbb{R}$, where $f(x) = x^2$.
 - (c) Let $f: A \to A$, where f(x) = x.
- (4) Let $f: S \to T$ and let $g: T \to U$ then
 - (a) Show if f is injective and g is injective then $g \circ f$ is injective.
 - (b) Show if f is surjective and g is surjective then $g \circ f$ is surjective.
 - (c) Show if $g \circ f$ is injective then f is injective.
 - (d) Show if $g \circ f$ is surjective then g is surjective.
 - (e) Show by conterexample that if $g \circ f$ is injective and f is injective then it is not necessary that g is injective.
 - (f) Show by contenexample that if $g \circ f$ is surjective and g is surjective then it is not necssary that f is surjective.

5. Sequences

- (1) Prove using the definition that
 - (a) $\lim_{n \to \infty} \frac{k}{n} = 0$ for any $k \in \mathbb{R}$ (b) $\lim_{n \to \infty} \frac{3n+1}{n+2} = 3$
- (2) Assume $\lim_{n \to \infty} a_n = a$ and $\lim_{n \to \infty} b_n = b$. Show $\lim_{n \to \infty} a_n b_n = ab$.
- (3) Assume $\lim_{n \to \infty} a_n = 0$ and and assume the sequence (b_n) is bounded. Show

- (4) Assume $\lim_{n\to\infty} a_n = 0$ and and assume the sequence (b_n) is not bounded. Show $\lim_{n\to\infty} a_n b_n \text{ is not necessarily zero. That is find } (a_n) \text{ and } (b_n) \text{ where } a_n \to 0 \text{ but } a_n b_n \not\to 0.$
- (5) Prove If (a_n) is convergent then (a_n) is bounded.
- (6) Know If (a_n) is monotone and bounded then (a_n) is convergent. (This is called the Monotone Convergence Theorem)
- (7) State and prove the Squeeze Theorem.
- (8) Use the Monotone Convergence Theorem to show (a_n) as described below has a limit. Compute that limit.
 - (a) $a_1 = 1, a_{n+1} = \frac{a_n + 1}{a_n + 2}$

(b)
$$a_1 = 1, a_{n+1} = \sqrt{a_n + 1}$$

- (9) Show the following sequences diverge to infinity.
 - (a) $\lim_{n\to\infty} 3n-1 = \infty$

 - (a) $\lim_{n \to \infty} \frac{1}{\sqrt{n+1}} = \infty$ (b) $\lim_{n \to \infty} \frac{n+5}{\sqrt{n+1}} = \infty$ (c) $\lim_{n \to \infty} a_n = \infty$ where $a_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}$.