Math 3330 - Test 1 Review

1 Parametric equations, Polar and Conic Sections

- 1. Graph the following
 - (a) $r = 1 + \cos(\theta)$.
 - (b) $r = \cos(\theta)$.
 - (c) $r = \cos(2\theta)$.
 - (d) $r = \theta$.
 - (e) The region inside the circle $r = 2\cos(\theta)$ and out side of the circle r = 1.
 - (f) The region inside the cardiod $r = 2 + 2\cos(\theta)$ and between $\theta = \pi/2$ and $\theta = 3\pi/4$.
 - (g) x = t + 1 and $y = t^3 + t$
 - (h) $x = 2\cos(t)$ and $y = 2\sin(t)$
 - (i) $x = 3\cos(t)$ and $y = 2\sin(t)$
 - (j) $x = t \cos(t)$ and $y = t \sin(t)$
- 2. Compute the tangent lines for the following functions.
 - (a) $r = 1 + \cos(\theta)$ at $\theta = \pi/4$.
 - (b) $x = t^3 + 3$ and $y = e^{t^3 + 1}$ at t = 3.
- 3. Compute the areas for the following regions
 - (a) $r = 1 + \cos(\theta)$ from $\theta = 0$ to $\theta = \pi$.
 - (b) $r = \sqrt{\sin(\theta)}$ from $\theta = 0$ to $\theta = \pi/2$.
 - (c) $x = t^3 + 3$ and $y = e^{t^3 + 1}$ from t = 0 to t = 3.

2 Vectors and \mathbb{R}^3

- 4. Find the (or a) line that
 - (a) contains the two points A(1,2,3,4) and B(0,1,2,1).

- (b) contains the point A(1,2,3) and is parallel to $\mathbf{v} = \langle 1, -2, 2 \rangle$.
- (c) contains the point A(1,2,3) and is perpendicular to $\mathbf{v} = \langle 1, -2, 2 \rangle$.
- (d) is contained within the plane x y + z = 8
- (e) is perpendicular to the plane x y + z = 8
- (f) is the intersection of the two planes $P_1 : x + y = 11$ and $P_2 : -1 + 2y z = 3$.
- 5. Do the following two lines intersect. If yes where?

$$L_1: \begin{cases} x = 1 + 2t \\ y = 3 - 2t \\ z = 1 \end{cases} \text{ and } L_2: \begin{cases} x = 1 + 5t \\ y = 3 \\ z = 1 - 2t \end{cases}$$

- 6. Find the plane that
 - (a) contains the three points A(1,2,3), B(2,3,4) and C(0,-2,1)
 - (b) contains the two lines

$$L_1: \begin{cases} x = 1+2t \\ y = 3-2t \\ z = 1 \end{cases} \text{ and } L_2: \begin{cases} x = 1+5t \\ y = 3 \\ z = 1-2t \end{cases}$$

7. Find the angle

(a) (the acute angle) between the two lines

(x x	= 2t - 5	(x	= 1 + 5t
$L_1: \{$	y	= 3t + 1	and L_2 :	y	= -3
l	z	=1	l	z	= 2t

- (b) (the acute angle) between the two planes $P_1: x + y = 11$ and $P_2: -1 + 2y z = 3$
- (c) (the acute angle) between the line L_1 and plane P_1 from above.
- 8. Assume we have a block (30 lbs) on an incline of 60° find the two components of the weight vector: perpendicular and parallel to the surface of the incline.
- 9. Be able to use cross product to compute area and volume.
- 10. Graph the following (in \mathbb{R}^3)
 - (a) $z = x^2$
 - (b) $z^2 + x^2 = 4$

- (c) the intersection of $z^2 + x^2 = 4$ and z = 2
- (d) $z = x^2 + y^2$
- (e) $z^2 = x^2 + y^2$
- (f) $z^3 = x^2 + y^2$
- (g) $z^2 = x^2 y^2$

3 Curves

11. Compute the arc length from t = 0 to $t = \pi$ for the function

$$\mathbf{r}(t) = \langle t, \cos(2t), \sin(2t) \rangle.$$

Also compute the displacement from t = 0 to $t = \pi$.

- 12. Graph $\mathbf{r}(t) = \langle t, t^2 \rangle$
- 13. Graph $\mathbf{r}(t) = \langle 3\cos(t), 2\sin(t) \rangle$
- 14. For $\mathbf{r}(t) = \langle t^3 + 1, t^2 \rangle$. Compute and then graph the velocity and the acceleration at the points t = 1 and at t = 2.
- 15. For $\mathbf{r}(t) = \langle t^3 e^t + 1, t^2 \rangle$. Compute the tangent line at t = 1.
- 16. Prove: $\|\mathbf{v} \times \mathbf{w}\|^2 + (\mathbf{v} \cdot \mathbf{w})^2 = \|\mathbf{v}\|^2 \|\mathbf{w}\|^2$
- 17. Prove: the product rule for dot product for vector functions
- 18. Prove: If $||\mathbf{r}(t)||$ is constant then $\mathbf{r}(t)$ is perpendicular to $\mathbf{r}'(t)$ at every point t.

4 Functions of one or more variables

19. Graph the following contour plots

(a)
$$f(x,y) = x^2 + y^2$$

- (b) f(x, y) = 5x 2y
- (c) $f(x,y) = x^2 y^2$
- (d) $f(x,y) = 4 x^2 y^2$
- (e) $f(x, y, z) = x^2 + y^2 + z^2$

20. Compute limits

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 + y^2 + 2}{x^2 + y^2 + 1}$$

$$x^2 + y^2 + xy$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{x+y+xy}{x^2+y^2}$$

(c) $\lim_{(x,y)\to(0,0)} \frac{e^{x^2+y^2}-1}{x^2+x^2}$

(d)
$$\lim_{(x,y)\to(0,0)} \frac{\cos(x^2+y^2)}{(x^2+y^2)^2}$$

- 21. Partial Derivatives
 - (a) Find the all second order partial derivatives for $f(x, y) = x^2 y^3 e^x$.
 - (b) Let $f(x, y) = xe^{x^2-y^2} y + 2$. Find the tangent plane at the point P(1, -1).
 - (c) Use the tangent plane above to approximate f(Q) for Q(0.9, -0.9).
 - (d) Let $f(x, y, z) = \sin(zx^2 + y) + x + z^2$. Find the tangent plane at the point P(1, 2, -2).
 - (e) Use the tangent plane above to approximate f(Q) for Q(0.9, 1.9, -2.1).