Math 3330 - Test 1

Name:

No calculators permitted and show all work. One problem per page.

- 1. Graph one of the following. Label a few points and the intercepts.
 - (a) $r = 2 \cos(\theta)$. Graph from $\theta = 0$ to $\theta = \pi$.
 - (b) $x = 4\cos(t)$ and $y = 2\sin(t)$. Label a few t values and show the directional arrows.
- 2. Identify the three points A(0, 2, 1), B(-1, 3, 1) and C(1, -1, 0). Find
 - (a) Find the plane containing the three points.
 - (b) Find the area of the triangle formed by the three points (use the cross product).
 - (c) Find one of the angles for the the triangle formed by ABC (tell me which angle you found).
- 3. Compute the arc length from t = 0 to $t = \pi$ for the function

$$\mathbf{r}(t) = \langle t^2, \cos(t^2), \sin(t^2) \rangle.$$

- 4. Let $\mathbf{r}(t) = \langle 2t^3 + t, t^2 \rangle$.
 - (a) Compute and then graph the velocity and the acceleration at the points t = 1 and at t = -1.
 - (b) Compute the tangent line at t = -11.
- 5. Prove: If $||\mathbf{r}(t)||$ is constant then $\mathbf{r}(t)$ is perpendicular to $\mathbf{r}'(t)$ at every point t.
- 6. Graph the contour plot for $f(x, y) = x^2 + 3y$.
- 7. Compute limits

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x^4 + y^4 + x^3 y}{x^4 + y^4}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{e^{x^2 + y^2} - 1}{x^2 + y^2}$$

8. Let $f(x, y, z) = x \cos(z^2 x + y) + x + y^2$. Find the tangent plane at the point P(-1, 4, 2). Use the tangent plane above to approximate f(Q) for Q(-0.9, 3.9, 2.1).

9. Assume $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 satisfy the following:

- $\mathbf{v}_i \cdot \mathbf{v}_j = 0$ whenever $i \neq j$, and
- $\mathbf{v}_i \cdot \mathbf{v}_i = 1$ for i = 1, 2, 3

Proposition: For the vector $\mathbf{w} = a\mathbf{v}_1 + b\mathbf{v}_2 + c\mathbf{v}_3$ we have

$$\|\mathbf{w}\| = \sqrt{a^2 + b^2 + c^2}.$$

Prove the proposition. The vectors $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 are said to be **or-thonormal**.