Math 3330 - Test 2 Review

1 Partial Derivatives

- 1. Be able to graph a gradient on a contour plot.
- 2. Let $f(x,y) = x^3 xy \cos(x)$. Compute the gradient of f(x,y).
- 3. Let $f(x,y) = x^3 xy$ and let $\mathbf{r}(t) = \langle 3t^2, 2t^3 + 4t \rangle$. Compute the derivative $\frac{df}{dt}$. Use the chain rule.
- 4. Let $f(x,y) = x^3 xy$ and let $\mathbf{r}(t,s) = \langle 3s\sqrt{t+1}, t^2 s^3 \rangle$. Compute the derivatives $\frac{\partial f}{\partial t}$ and $\frac{\partial f}{\partial s}$. Use the chain rule.
- 5. Let $f(x, y) = x^3 xy$.
 - (a) Compute the directional derivative of f(x, y) at P(1, 2) in the direction of $\mathbf{v} = \langle 1, -1 \rangle$.
 - (b) Compute the directional derivative of f(x, y) at P(1, 2) in the direction of maximum increase.
- 6. Let $f(x, y, z) = x^2 y z^3$.
 - (a) Compute $D_{\mathbf{v}}f(1,2,3)$ where $\mathbf{v} = \langle 0, 1, -1 \rangle$.
 - (b) Compute $D_{\mathbf{v}}f(1,2,3)$ in the direction of maximum increase.
- 7. Compute the extremma of the following:
 - (a) $f(x,y) = x^3y^2 y x^3$ (b) $f(x,y) = x^3 - 3x^2 + y^3 - y + 3$ (c) $f(x,y) = x^3 + x^2y + y^3 - 9y - 3$ (d) $f(x,y,z) = x^2 + y^2 + z^2$ subject to x + y - 2z = 1(e) f(x,y,z) = x + y - 2z subject to $x^2 + y^2 + z^2 = 1$ (f) $f(x,y,z) = x \ln(x) + y \ln(y) + z \ln(z)$ subject to x + y + z = 1

2 Double Integrals

8. $\iint_R x + y \, dA$ over the region defined by x + y = 2 and the coordinate axes.

- 9. $\iint_R xy \, dA$ over the region defined by $y = x^2$ and the line y = x + 1.
- 10. $\iint_R e^{x^2} dA$ over the region defined by y = -x, y = 2x and the vertical line x = 4.
- 11. $\iint_R e^{x^2 + y^2} dA$ over the region defined by the portion of the circle $x^2 + y^2 = 4$ in the third quadrant.
- 12. $\iint_R \sqrt{\frac{\tan^{-1}(y/x)}{x^2 + y^2}} \, dA \text{ over the region defined by the portion of the circle } x^2 + y^2 = 4 \text{ above the lines } y = -x \text{ and } y = x.$
- 13. Find the volume below the paraboloid $z = 12 x^2 y^2$ and above the xy-plane.
- 14. $\iint_R \sin(x-y)\cos(x+y) \, dA \text{ over the region defined the lines } y = x+2,$ $y = x+4, \ y = -x \text{ and } y = -x+3.$ Hint the change of variables is u = x-y and v = x+y.
- 15. $\iint_R \frac{x-y}{2x+y} dA \text{ over the region defined the lines } y = x+2, \ y = x, \\ y = -2x+2 \text{ and } y = -2x+3.$
- 16. $\iint_R xy \, dA$ over the region defined the graphs of xy = 1, xy = 3 and the lines y = x and y = 3x. Hint x = u/v and y = v.
- 17. $\iint_{R} (x-y)e^{x^2-y^2} dA \text{ over the region defined the lines } y = x+2, y = x, \\ y = -x \text{ and } y = -x+3.$
- 18. $\iint_{R} e^{x^{2}+4y^{2}} dA \text{ over the region defined by the portion of the ellipse} \\ \frac{x^{2}}{2} + y^{2} = 1 \text{ in the third quadrant. Hint use the change of variables} \\ x = 4v \cos(u) \text{ and } x = v \sin(u). \text{ And note I had } 0 \le u \le 2\pi \dots$

3 Fields and Line Integrals

19. Compute the following Line Integrals

- (a) $\int_C x dy$ where C is the line segment from (2,1) to (1,2).
- (b) $\int_C x ds$ where C is the line segment from (2, 1) to (1, 2).
- (c) $\int_C \langle x, y \rangle \cdot d\mathbf{r}$ where C is the line segment from (2, 1) to (1, 2).
- (d) $\int_C x y ds$ where C is the upper half of the circle $x^2 + y^2 = 4$ travelling counterclockwise.
- (e) $\int_C xydx$ where C is the upper half of the circle $x^2 + y^2 = 4$ travelling counterclockwise.
- (f) $\int_C \langle x, 2 \rangle \cdot d\mathbf{r}$ where C is the upper half of the circle $x^2 + y^2 = 4$ travelling counterclockwise.
- (g) $\int_C xdy$ where C is the portion of the parabola $y = x^2 + 1$ starting at the point (1, 2) and ending at (3, 10).
- (h) $\oint_C \langle x, xy \rangle \cdot d\mathbf{r}$ where C is the entire circle $x^2 + y^2 = 9$ travelling counterclockwise and starting at the point (3,0).
- 20. Use Green's Theorem if possible to solve the following. If not possible to use Green's theorem explain why.
 - (a) $\oint_C \langle x, -y \rangle \cdot d\mathbf{r}$. Let *C* be outside of the square traced from (0,0) to (0,2) to (1,2) to (1,0) and then back to (0,0).
 - (b) $\oint_C \langle e^{x^3} xy, e^{y^3} y \rangle \cdot d\mathbf{r}$. Let *C* be outside of the triangle traced from (0,0) to (0,2) to (1,2) and then back to (0,0).
 - (c) $\oint_C \langle \cos(x^2) + y, \cos(y^2) + xy \rangle \cdot d\mathbf{r}$. Let *C* be the circle $x^2 + y^2 = 4$ traced counter-clockwise.
 - (d) $\int_C x^3 dx$ where C is the upper half of the circle $x^2 + y^2 = 4$ travelling counterclockwise.