MA 2310: Test 1.1

No Calculators, no cell phones, no electronic devices of any kind allowed. Justify all answers with correct work.

1. Compute the following:

(a) $\cos(2\pi/3)$

(b) $\sin(5\pi/4)$

(c) $\cot(7\pi/6)$

(d) $\tan(\sin^{-1}(\frac{x}{x+1}))$

2. Compute the limit.

(a)
$$\lim_{x \to 3} \frac{3x^2 - 27}{x - 3}$$

(b)
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1}$$

(c)
$$\lim_{x \to 0} \frac{\sin(3x^2)}{x^2}$$

(d)
$$\lim_{n \to \infty} \frac{6n^3 + 5n + 2}{5n + 2}$$

(e)
$$\lim_{n \to \infty} \frac{7n^5 + 5n + 2}{2n^5 + 2}$$

(f)
$$\lim_{n \to \infty} \frac{4n^4 + 5n + 2}{3n^6 + 2}$$

3. Write down the definition of the derivative. Compute the derivative of $f(x) = x^3$ using the definition.

4. Let $f(x) = 2\sin(x)$. Find the equation of the tangent line at $x = \pi/4$ (if it helps $\pi/4 \approx 0.8$ and $\sqrt{2} \approx 1.4$). Graph the function f(x) and the tangent line you found.

5. Compute the derivatives of the following functions.

(a) $f(x) = x \csc(x)$

(b)
$$f(x) = \frac{x-1}{x^2+1}$$

(c)
$$f(x) = (x-1)^2(2x+3)^4$$

(d) $f(x) = \sec(x^2)\cos(x^2)$

(e) $f(x) = \sin^{-1}(3x+1)$

(f) $f(x) = \ln(\csc(2x+1))$

6. Compute the derivative implicitly.

$$e^{xy} - x^2 + y^2 = 11$$

7. Use implicit differentiation to show

$$\frac{d}{dx}[\sin^{-1}(x)] = \frac{1}{\sqrt{1-x^2}}$$