MATH 5320 Test 2

Name:

1. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2 + 5$. Prove f is continuous (using the $\varepsilon - \delta$ definition).

2. Define
$$f(x) = \begin{cases} \frac{x^4 + 3x^3}{|x|} - 2x^3 + 1 & : x \neq 0\\ 1 & : x = 0 \end{cases}$$

- (a) Show f is continuous at x = 0.
- (b) Compute f'(0) if it exists.
- 3. State and prove only **one** of these theorems: the product rule for differentiation or the FTC, v1.
- 4. We say a function is Lipshitz k if there is some k > 0 so that

$$|f(x) - f(y)| \le k|x - y|$$
 for all $x, y \in \mathbb{R}$.

- (a) Prove if f is Lipshitz k then f is uniformly continuous.
- (b) Prove if $|f'(x)| \leq 1$ for all $x \in \mathbb{R}$ then f is Lipshitz k. (Hint use the MVT).
- 5. For Taylor's theorem with n = 3, find a polynomial to approximate $f(x) = \cos(2x)$ at a = 0 over the range [a, b] = [0, 0.1]. Bound the remainder for the Taylor series.
- 6. Mean Value Theorems
 - (a) State the MVT. And what does the MVT say for the function f(x) = |x| + 1 over the interval [-2, 4]? Find any c satisfying the MVT.
 - (b) State the MVTI. And what does the MVTI say for the function f(x) = |x| + 1 over the interval [-2, 4]? Find any c satisfying the MVTI.

- 7. Let $f : [0,5] \to \mathbb{R}$ be defined by $f(x) = \begin{cases} 2 & : 0 < x < 5 \\ -1 & : x = 0 \text{ or } x = 5 \end{cases}$.
 - (a) Graph f(x).
 - (b) Prove using Riemann Sums that f(x) is integrable. What is the integral, I?