Name:_____

- 1. Define the following:
 - (a) $f: A \to B$ is injective \iff

(b) $\alpha = \sup A \iff$

(c)
$$A \sim B \iff$$

(d) $\lim_{n\to\infty} a_n = a \iff$

2. Let the set A be nonempty and bounded above and let $\alpha = \sup(A)$. Show for all $\varepsilon > 0$ there is some $x \in A$ so that $\alpha - \varepsilon < x \le \alpha$. 3. Show \mathbb{Q} is countable.

- 4. Do **one** of the following:
 - Prove using the εN definition that

$$\lim_{n\to\infty}\frac{2n+1}{3n+1}=\frac{2}{3}$$

• Prove using the $\varepsilon - N$ definition that

$$\lim_{n \to \infty} \frac{n^2 + 1}{3n + 1} = \infty$$

- 5. Do **one** of the following:
 - If $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$ then show $\lim_{n\to\infty} a_n b_n = ab$.
 - If $\lim_{x\to c} f(x) = F$ and let $k \in \mathbb{R}$ then show $\lim_{x\to c} kf(x) = kF$.

6. Prove using the $\varepsilon - \delta$ definition that

$$\lim_{x \to -2} x^2 + x - 1 = 1.$$