MATH 5320 Test 2: Practice

Know Quiz 6 and

1 Continuity

- 1. Show $f(x) = x^2 + 1$ is continuous at x = 3 (using the $\varepsilon \delta$ definition).
- 2. Show $f(x) = x^2 + 1$ is continuous where $f: \mathbb{R} \to \mathbb{R}$ (using the $\varepsilon \delta$ definition).
- 3. Show $f(x) = x^2 + 1$ is uniformly continuous at $f: [-10, 7] \to \mathbb{R}$ (using the $\varepsilon - \delta$ definition).
- 4. State the IVT and the EVT.
- 5. 3.4: 8 (page 169)

$\mathbf{2}$ Differentiability

- 6. Compute the derivatives of the following using the definition:
 - (a) $f(x) = x^2$

(b)
$$f(x) = \begin{cases} 3x - 2 + \frac{x^2}{|x|} & : x \neq 0 \\ -2 & : x = 0 \end{cases}$$
 at $x = 0$.

(c)
$$f(x) = \begin{cases} x \sin(\frac{1}{x}) & : x \neq 0 \\ 0 & : x = 0 \end{cases}$$
 at $x = 0$.

(c)
$$f(x) = \begin{cases} x \sin(\frac{1}{x}) & : x \neq 0 \\ 0 & : x = 0 \end{cases}$$
 at $x = 0$.
(d) $f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & : x \neq 0 \\ 0 & : x = 0 \end{cases}$ at $x = 0$.

(e)
$$f(x) = \begin{cases} \sin(\frac{1}{x}) & : x \neq 0 \\ 0 & : x = 0 \end{cases}$$
 at $x = 0$.

- 7. Prove if f(x) and g(x) are differentiable at x = c then [f(c)g(c)]' =f'(c)g(c) + f(c)g'(c).
- 8. Prove if f is differentiable at x = c then f is continuous at x = c.
- 9. State the MVT.
- 10. Find all values of c from the MVT for the following

- (a) $f(x) = 3x^2 + 5x + 7$; [1, 7]
- (b) $f(x) = 3x^2 + 5x + 7$; [a, b]
- (c) f(x) = |x|; [1, 7]
- (d) f(x) = |x|; [-1, 7]
- 11. 4.3:21
- 12. State Taylor's Theorem
- 13. Use Taylor's Theorem (n=3) to find a polynomial to apprximate the following functions at a=0. Bound the remainder term for values in the interval [0,1].
 - (a) $f(x) = \sin(2x)$.
 - (b) $f(x) = \cos(3x)$.
 - (c) $f(x) = e^{5x}$.

3 Integration

14. Prove (using Riemann Sums) that

$$f(x) = \begin{cases} 2 : x > 2 \\ -3 : x \le 2 \end{cases}$$

is integrable over the interval [0,3]. What is that integral?

- 15. Let $f(x) = x^2 + 1$, [a, b] = [1, 4] and let $\mathcal{P} = \{1, 2, 3, 3.5, 3.7, 4\}$ be a artition for [1,4] and let $\mathcal{S} = \{1, 2.2, 3.1, 3.6, 4\}$ be a sampling. Compute $RS(f, \mathcal{P}, \mathcal{S})$, $US(f, \mathcal{P})$ and $LS(f, \mathcal{P})$.
- 16. State the FTC v0, the FTC v1, the FTC v2 and the MVTI.
- 17. What does the MVTI say about
 - (a) $f(x) = x^2 + 1$ over [a, b] = [-1, 3].
 - (b) f(x) = |x| over [a, b] = [-3, 3].
- 18. 5.2:2,3,4
- 19. 5.4:9,10
- 20. Let $f_n(x) = x^n$ where $n \in \mathbb{N}$.

- (a) Graph $f_n(x)$ on the interval [0,1] for several values of n until you see the pattern. Explain the pattern.
- (b) Compute $\int_0^1 f_n$. (c) Find the limit $\lim_{n \to \infty} \int_0^1 f_n$.