1 Know the definitions and Theorems

- 1. |A| = |B| or $A \sim B$
- 2. $f: A \to B$ is injective.
- 3. $f: A \to B$ is onto.
- 4. $f: A \to B$ is bijective.
- 5. upper bound, lower bound, sup, inf
- 6. $a_n \to a \text{ or } a_n \to \infty$
- 7. (a_n) is Cauchy

8.
$$\lim_{x \to c} f(x) = I$$

- 9. $f: A \to B$ is continuous at x = c
- 10. $f: A \to B$ is continuous
- 11. $f: A \to B$ is uniformly continuous
- 12. $f: A \to B$ is linear
- 13. Some good theorems to know
 - (a) Bolzano-Weierstrass Theorem
 - (b) Extreme Value Theorem
 - (c) Intermediate Value Theorem
 - (d) Monotone convergence theorem.
 - (e) Sequential criterion for limits

2 Functions and Suprema

- 14. Let the set A be nonempty and bounded above and let $\alpha = \sup(A)$. Show for all $\varepsilon > 0$ there is some $x \in A$ so that $\alpha - \varepsilon < x \le \alpha$.
- 15. Let the set A be nonempty and bounded above and define $B = 3A = \{3a : a \in A\}$. Prove $\sup(B) = 3 \sup(A)$

- 16. Either prove or disprove that the functions defined below are injective or surjective.
 - (a) Let $f: (0, \infty) \to (0, \infty)$, where $f(x) = x^2$.
 - (b) Let $f : \mathbb{R} \to \mathbb{R}$, where $f(x) = x^2$.
 - (c) Let $f: A \to A$, where f(x) = x.
- 17. Let $f:S\to T$ and let $g:T\to U$ then
 - (a) Show if f is injective and g is injective then $g \circ f$ is injective.
 - (b) Show if f is surjective and g is surjective then $g \circ f$ is surjective.
 - (c) Show if $g \circ f$ is injective then f is injective.
 - (d) Show if $g \circ f$ is surjective then g is surjective.
 - (e) Show by conterexample that if $g \circ f$ is injective and f is injective then it is not necessary that g is injective.
 - (f) Show by conterexample that if $g \circ f$ is surjective and g is surjective then it is not necessary that f is surjective.

3 Cardinality

- 18. Let A, B and C be disjoint sets. Show if $A \sim B$ and $B \sim C$ then $A \sim C$.
- 19. Let A, B and C be disjoint sets. Show if $A \sim B$ then $A \cup C \sim B \cup C$.
- 20. Show the sets $\{\frac{1}{n} : n \in \mathbb{N}\} \sim \{\frac{1}{n+1} : n \in \mathbb{N}\}.$
- 21. Show the sets $[a, b] \sim [0, 1]$ where a < b.
- 22. Show the sets $(0, \infty) \sim (0, 1)$.
- 23. Show the sets $(-\infty, \infty) \sim (0, 1)$.
- 24. Show the sets $\mathbb{N} \sim \mathbb{Z}$.
- 25. Show the sets $\mathbb{N} \sim \mathbb{Q}$.
- 26. Show the sets $\mathbb{N} \not\sim \mathbb{R}$.

4 Sequences

27. Prove using the definition that

(a)
$$\lim_{n \to \infty} \frac{k}{n} = 0$$
 for any $k \in \mathbb{R}$
(b) $\lim_{n \to \infty} \frac{3n+1}{n+2} = 3$

- 28. Assume $\lim_{n \to \infty} a_n = a$ and $\lim_{n \to \infty} b_n = b$. Show $\lim_{n \to \infty} a_n b_n = ab$.
- 29. Assume $\lim_{n \to \infty} a_n = 0$ and and assume the sequence (b_n) is bounded. Show

$$\lim_{n \to \infty} a_n b_n = 0.$$

- 30. Assume $\lim_{n \to \infty} a_n = 0$ and and assume the sequence (b_n) is not bounded. Show $\lim_{n \to \infty} a_n b_n$ is not necessarily zero. That is find (a_n) and (b_n) where $a_n \to 0$ but $a_n b_n \neq 0$.
- 31. Prove If (a_n) is convergent then (a_n) is bounded.
- 32. Prove If (a_n) is monotone and bounded then (a_n) is convergent. (This is called the Monotone Convergence Theorem)
- 33. Prove the Squeeze Theorem.
- 34. Use the Monotone Convergence Theorem to show (a_n) as described below has a limit. Compute that limit.

(a)
$$a_1 = 1, a_{n+1} = \frac{a_n + 1}{a_n + 2}$$

(b) $a_1 = 1, a_{n+1} = \sqrt{a_n + 1}$

- 35. Show the following sequences diverge to infinity.
 - (a) $\lim_{n\to\infty} 3n-1 = \infty$
 - (b) $\lim_{n \to \infty} \frac{n+5}{\sqrt{n+1}} = \infty$
 - (c) $\lim_{n\to\infty} a_n = \infty$ where $a_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}$.

5 Limits of Functions

36. prove using the $\varepsilon-\delta$ definition of a limit

$$\lim_{x \to -2} 3x - 1 = -7 \text{ and } \lim_{x \to 3} x^3 - 8 = 19 \text{ and } \lim_{x \to -2} \frac{1}{1 + x^2} = \frac{1}{5}$$
$$\lim_{x \to 3} x^2 - 2x = 3 \text{ and } \lim_{x \to 1} \sqrt{x + 3} = 2$$

- 37. If $\lim_{x\to c} f(x) = F$ and $\lim_{x\to c} g(x) = G$ then show $\lim_{x\to c} f(x)g(x) = FG$.
- 38. If $\lim_{x\to c} f(x) = F$ and $\lim_{x\to c} g(x) = G$ then show $\lim_{x\to c} f(x) + g(x) = F + G$.
- 39. If $\lim_{x\to c} f(x) = F$ and let $k \in \mathbb{R}$ then show $\lim_{x\to c} kf(x) = kF$.