MATH 5320 Final Exam: Practice

Other Stuff 1

1. Test 1

2. Test 1.1

3. Test 2

4. Test 2 Review

$\mathbf{2}$ Sequences

5. Prove using the definition that

(a) $\lim_{n \to \infty} \frac{k}{n} = 0$ for any $k \in \mathbb{R}$

(b) $\lim_{n \to \infty} \frac{3n+1}{n+2} = 3$

6. Assume $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$. Show $\lim_{n\to\infty} a_n b_n = ab$.

7. Assume $\lim_{n\to\infty} a_n = 0$ and and assume the sequence (b_n) is bounded. Show

$$\lim_{n\to\infty} a_n b_n = 0.$$

8. Assume $\lim_{n\to\infty} a_n = 0$ and and assume the sequence (b_n) is not bounded. Show $\lim_{n\to\infty} a_n b_n$ is not necessarily zero. That is find (a_n) and (b_n) where $a_n\to 0$ but $a_nb_n\not\to 0$.

9. Prove If (a_n) is convergent then (a_n) is bounded.

10. Use the Monotone Convergence Theorem to show (a_n) as described below has a limit. Compute that limit.

1

(a) $a_1 = 1, a_{n+1} = 1 - \frac{1}{a_n + 2}$ (b) $a_1 = 1, a_{n+1} = \sqrt{a_n + 1}$

11. Show the following sequences diverge to infinity.

(a) $\lim_{n\to\infty} 3n - 1 = \infty$

(b) $\lim_{n\to\infty} \frac{n+5}{\sqrt{n+1}} = \infty$

3 Limits of Functions

12. prove using the $\varepsilon - \delta$ definition of a limit

$$\lim_{x \to -2} 3x - 1 = -7 \text{ and } \lim_{x \to 3} x^3 - 8 = 19 \text{ and } \lim_{x \to -2} \frac{1}{1 + x^2} = \frac{1}{5}$$

$$\lim_{x \to 3} x^2 - 2x = 3 \text{ and } \lim_{x \to 1} \sqrt{x + 3} = 2$$

- 13. If $\lim_{x\to c} f(x) = F$ and $\lim_{x\to c} g(x) = G$ then show $\lim_{x\to c} f(x)g(x) = FG$.
- 14. If $\lim_{x\to c} f(x) = F$ and $\lim_{x\to c} g(x) = G$ then show $\lim_{x\to c} f(x) + g(x) = F + G$.
- 15. If $\lim_{x\to c} f(x) = F$ and let $k \in \mathbb{R}$ then show $\lim_{x\to c} kf(x) = kF$.

4 De'Moivre

- 16. Compute the Taylor Series with a = 0 for the following
 - (a) $f(x) = \sin(x)$
 - (b) f(x) = cos(x)
 - (c) $f(x) = e^x$
 - (d) $f(x) = e^{i\theta}$ use Problem 16c
- 17. State and prove DeMoivre's Theorem.
- 18. Find trigonometric identities for
 - (a) $\cos(2x)$
 - (b) $\sin(2x)$
 - (c) $\cos(3x)$
 - (d) $\sin(3x)$
 - (e) $\cos(4x)$
 - (f) $\sin(4x)$