MA 5320 Quiz 6

- 1. Show $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = x^2$ is continuous at x = 3.
- 2. Show $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = x^2$ is continuous.
- 3. A function has a **removeable discontinuity** at a point x = a if f is discontinuous at x = a and we can redefine f(a) so that f becomes continuous at x = a. In each part decide whether the unction has a removeable discontinuoty at the given point. If so explain how to remove it. If not explain why.
 - (a) $f(x) = \frac{1}{x}; a = 0$ (b) $f(x) = \frac{x^2 - 4}{x + 2}; a = -2$
 - (c) $f(x) = x \sin(\frac{1}{x}); a = 0$
- 4. Assume $f: I \to \mathbb{R}$ is bounded on I, an open interval in \mathbb{R} .
 - (a) Show g(x) = xf(x) is continuous t x = 0
 - (b) Show g(x) = xf(x) is continuous t x = a for $a \neq 0$ if and only if f(x) is continuous t x = a.
- 5. State the EVT and the IVT.
- 6. What does the EVT say about the following functions
 - (a) $f: (0,1] \to \mathbb{R}$ continuous
 - (b) $f:[0,1] \to \mathbb{R}$ continuous
- 7. What does the IVT say about the following function $p(x) = x^5 + x^3 + 1$. Hint: what are p(1) and p(-1)?
- 8. Show f is uniformly continuous: $f: [-10, 5] \to \mathbb{R}$ where $f(x) = x^2$.
- 9. Show f is **not** uniformly continuous: $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = x^2$.
- 10. Is the following function is uniformly continuous? Prove or disprove.

$$f : \mathbb{R} \to \mathbb{R}$$
 where $f(x) = x^2$.