Math 3520 - Test 1 Review

Be certain to **know** the quizzes and . . .

1 Preliminaries

- 1. Induction, definition of odd, even, sets union, intersection complement
- 2. Prove $8|5^{2n} 1$ for all $n \in \mathbb{N}$.

2 Relations

- 3. Define relation, equivalence relation, well ordered, reflexive, symmetic, trasitive, domain, codomain, partirion of a set
- 4. We define the given relation from A to B by

 $R = \{(1, a), (2, a), (3, a), (4, a), (1, a), (2, a)\}\$

where $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c\}$. What are the domain and codomain?

5. We define the given relation on A by

 $R = \{(1,1), (2,1), (3,1), (4,1), (1,2), (2,2)\}$

where $A = \{1, 2, 3, 4\}.$

- (a) What are the domain and codomain?
- (b) Is R reflexive? If it is not reflexive, expand R so that it is reflexive.
- (c) Is R symmetric? If it is not symmetric, expand R so that it is symmetric.
- (d) Is R transitive? If it is not transitive, expand R so that it is transitive.
- (e) Is R an equivalense relation?
- 6. We define the given relation on A by

 $R = \{(1,1), (2,2), (3,3), (4,4), (1,2), (2,1), (3,2), (2,3), (a,b)(c,d)\}$

where $A = \{1, 2, 3, 4\}.$

- (a) Assume R is an equivalence relation. Find (a, b) and (c, d).
- (b) What are the equivalence classes for R.
- 7. We define the given relation on \mathbb{Z} by

$$aRb \Leftrightarrow 4|3a - b.$$

- (a) Prove R is reflexive.
- (b) Prove R is symmetric.
- (c) Prove R is transitive.
- (d) What are the equivalence classes for R.

3 Functions

- 8. Define functiom, injective, surjective, domain, codomain, range, inverse image, inverse function, permutations
- 9. Define $f : \{1, 2, 3\} \rightarrow \{4, 7, 9\}$ by f(1) = 4, f(2) = 4 and f(3) = 9.
 - (a) Is f injective, surjective or bijective? Compute
 - (b) Compute $f(\{1,2\}), f^{-1}(\{1,4\})$ and $f \circ f^{-1}(\{4,9\})$.
- 10. Define $f : \mathbb{Z} \to \mathbb{Z}$ by f(n) = 2n 1. Is f injective, surjective or bijective? Prove or disprove.
- 11. Define $f: (-\infty, 0) \to [0, \infty)$ by $f(x) = x^2$.
 - (a) Is f injective, surjective or bijective? Prove or disprove.
 - (b) Compute $f((-2,2)), f^{-1}((-2,2)), f^{-1} \circ f(\{4,9\})$ and $f \circ f^{-1}(\{4,9\})$.
- 12. Define $f : \mathbb{R} \setminus \{2\} \to \mathbb{R} \setminus \{1\}$ by $f(x) = \frac{x}{x-2}$. Is f injective, surjective or bijective? Prove or disprove.
- 13. Let $f: A \to B$ and $g: B \to C$. Prove the following.
 - (a) If f and g are injective then $g \circ f$ is injective.
 - (b) If f and g are surjective then $g \circ f$ is surjective.
- 14. Find all bijective functions from $\{1, 2, 3\}$ to $\{1, 2, 3\}$. How many functions did you come up with?

- 15. List all elements of the set S_3 . How many elements are in the set S_6 ?
- 16. For the following permutaions:

 $\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}, \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \text{ and } \sigma_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$ compute:

- (a) $\sigma_1 \circ \sigma_1$
- (b) $\sigma_1 \circ \sigma_2 \circ \sigma_2$
- (c) σ_1^3
- (d) σ_1^{-1}

4 Cardinality

- 17. Define cardinality. That is $A \sim B$ if and only if ...
- 18. Know \sim is an equivalence relation and what that means.
- 19. Show $\mathbb{N} \sim 2\mathbb{N}$
- 20. Show $\mathbb{N} \sim \mathbb{Z}$
- 21. Let A = [0, 2] and B = [-1, 6]. Show $f : A \to B$ given by $f(x) = \frac{7}{2}x 1$ is a bijection. What does this tell uas about the sets A and B?