Name:_____

1. Prove for all $n \in \mathbb{N}$ then $3|n^3 - n$.

2. We define the given relation on \mathbbm{Z} by

$$aRb \Leftrightarrow 4|a-b.$$

- (a) Prove R is reflexive.
- (b) Prove R is symmetric.
- (c) Note R is an equivalence relation. What are the equivalence classes for R?

3. Let $f: B \to C$ and $g: A \to B$. Prove if f is injective and g is injective then $f \circ g$ is injective.

4. List all elements of the set S_2 . How many elements are in the set S_5 ?

5. For the following permutaions:

 $\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix}, \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \text{ and } \sigma_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}.$
compute:

- (a) $\sigma_1 \circ \sigma_2 \circ \sigma_3$
- (b) σ_1^3
- (c) σ_3^{-1}

6. Let $A = (0, \infty)$ and B = (0, 1). Show $f : A \to B$ given by $f(x) = \frac{1}{x+1}$ is a bijection. What does this tell us about the sets A and B?