Math 3520 - Final Exam Review

Prepare

- Test 1
- Test 2
- Test 2 Review
- and this Review

1 New Stuff

- 1. Definition of a **subgroup** and of an **isomorphism**.
- 2. For the group $(\mathbb{Z}, +)$ prove, using the 2-step subspace test, that $H = \{3n : n \in \mathbb{Z}\}$ is a subgroup.
- 3. For the group $(\mathbb{Z},+)$ Show $H=\{2n+1:n\in\mathbb{Z}\}$ is not a subgroup.
- 4. For the group (S_3, \circ) Show

$$H = \left\{ \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array} \right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array} \right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array} \right) \right\}$$

is not a subgroup of S_3 .

- 5. Let G be any group and let g be a fixed element of G then prove, using the 2-step subspace test, that $H = \{gag^{-1} | a \in G\}$ is a subgroup.
- 6. Let G be any group then prove, using the 2-step subspace test, that $H = \{a \in G | ag = ga \, \forall g \in G\}$ is a subgroup.
- 7. For the groups $G_1 = (\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2, +)$ and $G_2 = (\mathbb{Z}_8, +)$
 - (a) Find the orders of the elements (1,1,1) and (1,0,1) in G_1 and the orders of the elements 1, 2, 3 in G_2 ?
 - (b) Are any of the above elements generators for their respective groups?
 - (c) Why aren't the groups isomorphic?
- 8. For the groups $G_1 = (\mathbb{Z}_9^*, +)$ and $G_2 = (Z_6, +)$

- (a) Find the orders of three diffferent non identity elements in G_1 and the orders of the elements 1, 2, 3 in G_2 ?
- (b) Are any of the above elements generators for their respective groups?
- (c) The two groups are isomorphic. Find the isomorphism $f: G_1 \to G_2$.
- 9. Note that (G, \cdot) is a group where $G = \{2^n : n \in \mathbb{Z}\}$ and \cdot is regular multiplication. Prove Axioms G_1 and G_3 for (G, \cdot) .
- 10. Note that (G, \cdot) is a group where $G = \{2^n : n \in \mathbb{Z}\}$ and \cdot is regular multiplication. Show $G \cong \mathbb{Z}$ where \mathbb{Z} is a group over addition. I used the isomorphism $f : \mathbb{Z} \to G$. We need to prove f preserves the operation and that f is a bijection.

2 Relations

11. We define the given relation on A by

$$R = \{(1,1), (2,1), (3,1), (4,1), (1,2), (2,2)\}$$

where $A = \{1, 2, 3, 4\}.$

- (a) What are the domain and codomain?
- (b) Is R reflexive? If it is not reflexive, expand R so that it is reflexive.
- (c) Is R symmetric? If it is not symmetric, expand R so that it is symmetric.
- (d) Is R transitive? If it is not transitive, expand R so that it is transitive.
- (e) Is R an equivalense relation?
- 12. We define the given relation on A by

$$R = \{(1,1), (2,2), (3,3), (4,4), (1,2), (2,1), (3,2), (2,3), (a,b)(c,d)\}$$
 where $A = \{1,2,3,4\}$.

- (a) Assume R is an equivalence relation. Find (a, b) and (c, d).
- (b) What are the equivalence classes for R.

13. We define the given relation on \mathbb{Z} by

$$aRb \Leftrightarrow 4|3a - b|$$
.

- (a) Prove R is reflexive.
- (b) Prove R is symmetric.
- (c) Prove R is transitive.
- (d) What are the equivalence classes for R.

3 Functions

- 14. Define $f: \{1,2,3\} \to \{4,7,9\}$ by f(1) = 4, f(2) = 4 and f(3) = 9.
 - (a) Is f injective, surjective or bijective? Compute
 - (b) Compute $f(\{1,2\})$, $f^{-1}(\{1,4\})$ and $f \circ f^{-1}(\{4,9\})$.
- 15. Define $f: (-\infty, 0) \to [0, \infty)$ by $f(x) = x^2$.
 - (a) Is f injective, surjective or bijective? Prove or disprove.
 - (b) Compute f((-2,2)), $f^{-1}((-2,2))$, $f^{-1} \circ f(\{4,9\})$ and $f \circ f^{-1}(\{4,9\})$.
- 16. Define $f: \mathbb{R} \setminus \{2\} \to \mathbb{R} \setminus \{1\}$ by $f(x) = \frac{x}{x-2}$. Is f injective, surjective or bijective? Prove or disprove.
- 17. Let $f: A \to B$ and $g: B \to C$. Prove the following.
 - (a) If f and g are injective then $g \circ f$ is injective.
 - (b) If f and g are surjective then $g \circ f$ is surjective.

4 Cardinality

- 18. Define cardinality. That is $A \sim B$ if and only if . . .
- 19. Know \sim is an equivalence relation and what that means.
- 20. Show $\mathbb{N} \sim 2\mathbb{N}$
- 21. Show $\mathbb{N} \sim \mathbb{Z}$
- 22. Let A = [0, 2] and B = [-1, 6]. Show $f : A \to B$ given by $f(x) = \frac{7}{2}x 1$ is a bijection. What does this tell uas about the sets A and B?