Measure Theory - Test 1

Name:

- 1. State the following definitions
 - (a) Let S be a set. We say S is a σ -algebra on S iff
 - (b) S is a null set iff
 - (c) Define the outer Lebesgue measure.
 - (d) $E \in \mathcal{M}$ iff and only if
 - (e) On \mathbb{R} with the usual topology. Define the Borel sets.
- 2. Let A and B be null sets in \mathbb{R} . Show $A \cup B$ is null.
- 3. Let A and B be measureable sets in \mathbb{R} . Show $A \cup B$ is measureable. Hint: You should use the subadditivity of m^* .
- 4. Do one of the following:
 - If $m^*(A) = 0$ then $m^*(AUB) = m^*(B)$.
 - If $m^*(A \triangle B) = 0$ then $m^*(A) = m^*(B)$.
- 5. Let \mathcal{A}_1 be the σ -algebra generated by the open intervals in \mathbb{R} and Let \mathcal{A}_2 be the σ -algebra generated by the closed intervals in \mathbb{R} . Show $\mathcal{A}_1 = \mathcal{A}_2$.
- 6. Show the following are equivalent:
 - $E \in \mathcal{M}$.
 - For all $\varepsilon > 0$ there is an open set O so that $E \subseteq O$ and $m^*(O/E) < \varepsilon$.
- 7. Assume A and B are independent events. Show A^c and B are independent events.