Name:__

Measure Theory Quiz 2

- 1. Show the following definitions are equivalent.
 - A function $f : A \to B$ is **continuous** if for all $a \in A$ and for all $\varepsilon > 0$ there is a $\delta > 0$ so that if $|x - a| < \delta$ then $|f(x) - f(a)| < \varepsilon$.
 - A function $f: A \to B$ is **continuous** if for all $U \in B$ open, $f^{-1}(U)$ is open in A.
- 2. Find a sequence of functions $f_n: [0,1] \to \mathbb{R}$ so that

•
$$\int f_n(x)dx = 1$$
 and
• $\lim_{n \to \infty} f_n(x) = 0$ for all $x \in [0, 1]$.

- 3. Compute the lim sup and lim sup of the following.
 - $a_n = (-1)^n$
 - $a_n = n^4 (-1.01)^n$
 - $c_n = q_n$ where $\mathbb{Q} = \{q_1, q_2, q_3, \ldots\}$ is an enumeration of the rationals.
- 4. Show that \mathbb{Q} is a null set. Recall the definition of a null set.

A set $A \subseteq \mathbb{R}$ is a **null set** if for all $\varepsilon > 0$ there is a sequence of intervals $(I_n)_{n=1}^{\infty}$ so that

•
$$A \subseteq \bigcup_{n=1}^{\infty} I_n$$
 and
• $\sum_{n=1}^{\infty} \ell(I_n) < \varepsilon$