Name:

- 1. Do one of the following.
 - State the Peano Axioms
 - Prove $1+r^1+r^2+\dots+r^n = \frac{1-r^{n+1}}{1-r}$ using induction and compute $1+(\frac{1}{2})^1+(\frac{1}{2})^2+(\frac{1}{2})^3+\dots++(\frac{1}{2})^{100}$ and compute $1+(\frac{1}{2})^1+(\frac{1}{2})^2+(\frac{1}{2})^3+\dots$

- 2. Do one of the following
 - (a) State the definition of the set Z in terms of an equivalence relation (as in class). And state the definition of addition and multiplication.
 - (b) State the definition of the set \mathbb{Q} in terms of an equivalence relation (as in class). And state the definition of addition and multiplication.
 - (c) State the definition of the set $\mathbb R$ and define the words complete, ordered and field.

- 3. Look at the sets A and B. If $A \sim B$ prove it. If not state it.
 - (a) $A = \mathbb{N}$ and $B = \mathbb{Z}$
 - (b) $A = \mathbb{Q}$ and $B = \mathbb{R}$

4. Prove the sequence $\left(\frac{5n+1}{3n+2}\right)$ is convergent.

- 5. The following questions refer to \mathbb{C} .
 - (a) Find all solutions in \mathbb{C} to the following equation.

$$x^3 = -1$$

(b) Use DeMoivre's equation to prove the trigonometric following identity.

$$\cos(3\theta) = \cos^3(\theta) - 3\cos(\theta)\sin^2(\theta)$$

6. State the Monotone Convegent Theorm and use it to prove the following sequence is convergent. And find its limit.

$$a_1 = 12$$
 and $a_{n+1} = \sqrt{4 + a_n}$

7. Show the sequence defined below is not Cauchy. $S_1 = \sum_{k=1}^{1} \frac{1}{k} = \frac{1}{1}, S_2 = \sum_{k=1}^{2} \frac{1}{k} = \frac{1}{1} + \frac{1}{2}, S_3 = \sum_{k=1}^{3} \frac{1}{k} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3}$ and $S_n = \sum_{k=1}^{n} \frac{1}{k} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ That is show (S_n) is not Cauchy. 8. Show the sequence defined below is convergent. $S_n = \sum_{k=1}^n \frac{1}{k^2 - k}$