Math 6250 Quiz 4

Name:

- 1. Show the following are monotone or not. State whether they are monotone increasing, monotone decreasing or not monotone. And prove it.
 - (a) $a_n = \frac{1}{n}$.
 - (b) Defined recursively as $a_1 = 1$ and $a_{n+1} = 1 + \frac{1}{a_n}$.
 - (c) Defined recursively as $a_1 = 1$ and $a_{n+1} = 1 + \frac{a_n}{a_n + 1}$.
 - (d) $a_n = \frac{-1}{n}$.
 - (e) What do the sequences from 1b and 1c have to do with a well known sequence?
- 2. Prove the Monotone convergence Theorem: That is If (a_n) is a bounded and monotone sequence then (a_n) converges.
- 3. Use the Monotone Convergence Theorem to show that: the sequence defined as $a_1 = 1$ and $a_{n+1} = 1 + \frac{a_n}{a_n+1}$ converges.
- 4. Prove with εN proof that $a_n = \frac{2n+1}{3n+5}$ converges.
- 5. Prove with εN proof that the sequence defined below is not Cauchy.

$$a_n = \sum_{j=1}^n \frac{1}{j}$$

So $a_1 = \sum_{j=1}^{1} \frac{1}{j} = \frac{1}{1} = 1$, $a_2 = \sum_{j=1}^{2} \frac{1}{j} = \frac{1}{1} + \frac{1}{2} = \frac{3}{2}$ and $a_3 = \sum_{j=1}^{3} \frac{1}{j} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} = \frac{11}{6}$.

6. Let (a_j) be a sequence in \mathbb{C} so that for all pairs of integers 0 < M < Nwe have

$$|a_M - a_{M+1}| + |a_{M+1} - a_{M+2}| + |a_{M+2} - a_{M+3}| + \dots + |a_{N-1} - a_N| \le 1$$

Then (a_j) converges.