Math 3330 - Some More Review

- 1. Find the vector $\mathbf{v} \in \mathbb{R}^2$ so that \mathbf{v} is 3-units long and if its initial point is the origin, \mathbf{v} makes a 135% angle with the x-axis.
- 2. Let $\mathbf{v_1}, \mathbf{v_2} \in \mathbb{R}^3$ so $\mathbf{v_1} = \langle 1, 2, 3 \rangle$ and $\mathbf{v_2} = \langle 2, -1, 1 \rangle$. Find c_1 and c_2 so that

$$c_1\mathbf{v_1} + c_2\mathbf{v_2} = \langle 4, -7, -3 \rangle$$

- 3. Let $\mathbf{v_1}$, $\mathbf{v_2}$ and $\mathbf{v_3} \in \mathbb{R}^3$ so $\mathbf{v_1} = \langle 1, 2, 3 \rangle \mathbf{v_2} = \langle 2, -1, 1 \rangle$ and $\mathbf{v_3} = \langle 4, -3, 7 \rangle$.
 - (a) Find angle between $\mathbf{v_1}$ and $\mathbf{v_2}$.
 - (b) Find three different unit vectors perpendicular to $\mathbf{v_1}$.
 - (c) Find \mathbf{u} a unit vector parallel to \mathbf{v}_3 .
 - (d) Compute $\mathbf{u} \cdot \mathbf{v_3}$ and compute $\|\mathbf{v_3}\|$.
- 4. Let $\mathbf{v_1}$, $\mathbf{v_2}$ and $\mathbf{v_3} \in \mathbb{R}^3$ so $\mathbf{v_1} = \langle 1, 2, 3 \rangle \mathbf{v_2} = \langle 2, -1, 1 \rangle$ and $\mathbf{v_3} = \langle 4, -3, 7 \rangle$.
 - (a) Compute $\mathbf{v_1} \times \mathbf{v_2}$.
 - (b) Compute the area of the parallelogram formed by the two vectors $\langle 2, -1 \rangle$ and $\langle 4, -3 \rangle$. Also draw the vectors and the parallelogram.
 - (c) Compute the volume of a parallelepiped formed by the three vectors v₁, v₂ and v₃.
 - (d) Find a single unit vector \mathbf{w} that is simultaneously perpendicular to $\mathbf{v_1}$ and $\mathbf{v_2}$.
 - (e) Show that any vector of the form $\langle a 3b, a, b a \rangle$ where $a, b \in \mathbb{R}$ is perpendicular to $\mathbf{v_1}$.
- 5. Find the equation of the plane containing the points P(1, 2, 3), Q(1, 0, 1) and R(9, 0, 1).
- 6. Find the equation of a line (any line) contained within the plane x y + z = 2.
- 7. Find the equation of a line containing the point (1, 2, 3) perpendicular to the plane x y + z = 2.

8. Find the equation of the plane containing the lines

(x =	2-2t	ſ	x =	2 - 2t
$L_1:$	y =	3+t	$L_2:$	y =	3+2t
	z =	3+4t	l	z =	3

9. For the two planes below show they do not intersect.

$$P_1: x + y - z = 4 P_2: x + y - z = 5$$

10. For the two planes below find the equation of the line intersecting

$$P_1: x + y - z = 4 P_2: 2x + -3y + z = 4$$

11. For the two planes below find the angle of intersection.

$$P_1: x + y - z = 4 P_2: 2x + -3y + z = 4$$