Name:

- 1. Graph the following conic sections.
 - (a) $\frac{x^2}{4} + y^2 = 1$
 - (b) $\frac{x^2}{4} \frac{y^2}{9} = 16$
 - (c) $\frac{x^2}{4} + y = 1$
 - (d) $y^2 + 2y + 12x + 25 = 0$
 - (e) $r = 4\cos(\theta)$ Given in polar.
 - (f) $r = 2 \tan(\theta) \sec(\theta)$ Given in polar, however it may be easier to convert to Cartesian before graphing.
 - (g) $x = 2\cos(t)$ and $y = -4\sin(t)$. Given as a parametric equation.
- 2. Find an equation to express the conic section described below.
 - (a) a parabola with vertex (0, 2) and symmetric about the *y*-axis.
 - (b) a parabola with vertex (0,0) and symmetric about the x-axis, and the graph is only in the second and third quadrants.
 - (c) an ellipse with center (0,2), major axes (along the x-axis) of 6 units and a minor axis of 4 units.
 - (d) an ellipse with foci $(\pm 4, 0)$ and going through the point (0, 2).
- 12.1: 13, 15, 23, 31, 33
- $12.2: \quad 9, \, 23, \, 32$