Name:

- 1. Compute the foillowing without a calculator:
 - $\cos(\pi/2)$
 - $\sec(\pi/3)$
 - $\sin(11\pi/3)$
 - $\tan(14\pi/6)$
 - $\csc(-\pi/6)$
 - $\cos^{-1}(1)$ all answers $0 \le \theta \le 2\pi$.
 - $\sec^{-1}(2)$ all answers $0 \le \theta \le 2\pi$.
 - $\sin^{-1}(\frac{-\sqrt{3}}{2})$ all answers $0 \le \theta \le 2\pi$.
- 2. Evalute the Riemman sum for f on the given interval for the given value for n and x_k . Sketch the function and the rectangles (label your graph).

f(x) = 1/x, [a, b] = [1, 3], n = 5, $\bar{x_1} = 1.1$, $\bar{x_2} = 1.5$, $\bar{x_3} = 2$, $\bar{x_4} = 2.3$ and $\bar{x_5} = 3$. Use regularly spaced intervals so $x_0 = 1$, $x_2 = 1.4$, etc. And use the formula

AREA
$$\approx \sum_{k=1}^{5} f(\bar{x_k}) \Delta_k.$$

3. Use the right hand rule to approximate the following with n = 4.

$$\int_{1}^{3} x^2 + 1$$

- 4. Use a formula to compute the following
 - $\sum_{k=1}^{100} k + 1$ • $\sum_{k=1}^{200} k(3k+1) - 2k$
- 5. Use the right hand rule to compute the area exactly for

$$\int_{1}^{4} 3x - 2.$$

Use the formulas

$$\Delta x = \frac{b-a}{n} \text{ and } x_k = a + k\Delta x$$
$$\int_1^4 3x - 2 = \lim_{n \to \infty} \sum_{k=1}^n f(x_k) \Delta_k$$