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1 A Rough introduction to Number Theory and
Diophantine Equations

1.1 Number Theory

We will start with numbers and then to the theory. We have many sets of
numbers, we will be concerned with only these two

N = {1, 2, 3, 4, 5, . . .} the natural numbers, and
Z = {· · · ,−2,−1, 0, 1, 2, 3, . . .} the integers.

We know how to do many things with these numbers: add, subtract,
multiply and divide. However, when we divide we may write it differently
here:

7 R 2

3
)
23

will be written as 23 = 3 · 7 + 2. In general that is a divided by b is written
as

a = b · q + r

where q is called the quotient and r is the remainder. And 0 ≤ r < b.
Important point here is that the q and r are unique. This fact is important
and not true for all sets of numbers. But it is true for /Z.

Definition 1.1. We say a divides b (written a|b) if when we divide a by b
we get a remainder of zero. Equivalently we can say a|b if and only if there
is some k ∈ Z so thatb = ka. We call b a divisor of a.

Definition 1.2. We say p ∈ N is a prime if the only divisors of p are 1
and itself.

Theorem 1.3 (Euclid). There are infinitely many primes.

Proof. Assume there are are only finitely many primes (toward a contradic-
tion). Let’s list all primes: p1, p2, p3, . . . , pn.

Define x = p1 · p2 · p3 · · · · · pn + 1.
Note dividing x by pi yields x = piq + 1. So pi 6 |x for any i.
But there is some prime p that divides x so that prime was not on our

list. Thus our list is not all of the primes, a contradiction. So our assumption

“there are are only finitely many primes”
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is false. Therefore there are infinitely many primes.

Definition 1.4. We say d ∈ N is the greatest common divisor of two
integers a and b (that is d = gcd(a, b)) if

• d|a and d|b, and

• if d′|a and d′|b then d′|d.

Problem 1.5. Find the gcd of 18 and 45.

Factoring is an expensive operation we want an algorithm that is less
expensive.

Euclidean Algorithm We will find the gcd(a,b)
first divide a by b a = b · q1 + r1 is r1 = 0 then the gcd = b
now divide b by r1 b = r1 · q2 + r2 is r2 = 0 then the gcd = r1
now divide r1 by r2 r1 = r2 · q3 + r3 is r2 = 0 then the gcd = r2

continue until the remainder is zero.

Example Find the gcd(312, 252).

312 = 252(1) +60
252 = 60(4) +12
60 = 12(5) +0

Thus the gcd is 12.

Problem 1.6. Find the gcd(330,1575)

Theorem 1.7. Let a, b ∈ Z and d = gcd(a, b). Then there exist x, y ∈ Z so
that

ax+ by = d.

So we have
gcd(18,45) = 9 18(-2) + 45(1) = 9
gcd(312, 252) = 12 312(-4) + 252(5) = 12
gcd(330,1575)= 15 330(??) + 1575(??) = 15

How did I find these answers. First we rewrite the previous calculations.

312 = 252(1) +60 60 = 312(1) + 252(−1)
252 = 60(4) +12 12 = 252(1) + 60(−4)
60 = 12(5) +0

Next we work in reverse.
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12 = 252(1) + 60(−4) (1)

12 = 252(1) + (312(1) + 252(−1))(−4) sub in 60 = 312(1) + 252(−1) (2)

12 = 252(1) + 312(−4) + 252(4) distribute (3)

12 = 252(5) + 312(−4) add like terms (4)

Problem 1.8. Find x and y so that

330x+ 1575y = 15.

1.2 Diophantine Equations

Let a, b and n ∈ Z. The equation

ax+ by = n (5)

has a a solution in integers if and only if d|n where d = gcd(a, b). Moreover,
if (x0, y0) then

x = x0 −
b

d
t (6)

y = y0 +
a

d
t (7)

is a solution for any t ∈ Z.
How to find a solution ax+by=d (if d—n where d = gcd(a,b))

1. Find a solution to equation ax+by=d, say (x0, y0)

2. So ax0 + by0 = d now multiply by n
d to get a(x0 ∗ nd ) + b(y0 ∗ nd ) = n

3. Use equation (7) to get other answers if desired.

Problem 1.9 (Euler, 1770). Divide 100 into two summands such that one
is divisible by seven and the other is divisible by 11.

Solution This problem is 100 = 7x+ 11y.
find d = gcd(7,11) = 1
find solution to 1 = 7x+ 11y. I get 1 = 7(−3) + 11(2)
Multiply by 100 to get 100 = 7(−300) + 11(200)
it seems this answer is correct but Euler wants positive numbers so let’s

look for other answers with
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x = −300− 11

1
t = −300− 11t

y = 200 +
7

1
t = 200 + 7t

• To guarantee x > 0 we need −300− 11t > 0 thus t < 300
11 ≈ −27.3

• To guarantee y > 0 we need 200 + 7t > 0 thus t > 200
7 ≈ −28.6

So the only answer is if t = −28. So

x = −300− 11(−28) = 8

y = 200 + 7(−27) = 4

Therefore 100 = 7(8) + 11(4) = 56 + 44.

Problem 1.10. Find x and y so that

330x+ 1575y = 15.

Problem 1.11 (Mahaviracarya, 850). There were 63 equal piles of plantain
fruit and 7 single fruits. They were divided equally among 23 travelers.
What is the number of fruit in each pile?

Problem 1.12 (Alcuin of York, 775). One hundred bushels of grain are dis-
tributed among 100 persons in such a way that each man receives 3 bushels,
each woman receives 2 bushels and each child receives 1/2 bushel. How many
men women and children were there?

Problem 1.13 (Yen Kung, 1372). We have an unknown number of coins.
In piles of 78 coins we are 50 coins short. But in piles of 78 coins we have
the right number of coins. How may coins are there?

Problem 1.14 (Homework - New Yorker). Six sailors survive a shipwreck
and swim to a tiny island where there is nothing but a coconut tree and a
monkey. The sailors gather all the coconuts and put them in a big pile under
the tree. Exhausted, they agree to wait until the next morning to divide up
the coconuts. At one o’clock in the morning, the first sailor wakes. He
realizes that he can’t trust the others, and decides to take his share now.
He divides the coconuts into six equal piles, but there is one left over. He
gives that coconut to the monkey, buries his coconuts, and puts the rest of
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the coconuts back under the tree. At two o’clock, the second sailor wakes up.
Not realizing that the first sailor has already taken his share, he too divides
the coconuts up into six piles, leaving one left over which he gives to the
monkey. He then hides his share, and piles the remainder back under the
tree. At three o’clock, the third sailor wakes up and carries out the same
actions. And so do the fourth fifth and sixth sailor.

Later in the morning, all the sailors wake up, and try to look innocent.
No one makes a remark about the diminished pile of coconuts, and no one
decides to be honest and admit that they’ve already taken their share. In-
stead, they divide the pile up into six piles, for the seventh time, and find
that there is yet again one coconut left over, which they give to the monkey.

How many coconuts were there originally?
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2 A Rough Introduction to Modular Mathematics

2.1 Modular Mathematics

A bit of notation. We say d divides n if d = kn for some k]in/Z and we
write as d|n.
Example: We write 3|12 and we write 3 6 |13. If d|n we say d is a divisor
of n.

Definition 2.1. We say a ≡ b mod n if and only if n|(b− a).

Example: Some simple examples of modular math:

3 ≡ 7 mod 2 since 2|(3− 7)

7 ≡ 3 mod 2 since 2|(3− 7)

3 6≡ 7 mod 3 since 3 6 |(3− 7)

Find a number a so that a ≡ 47 mod 13 . . .

Problem 2.2. Find all numbers a so that

a ≡ 2 mod 3.

Solution Note 5 works 5 ≡ 2 mod 3.
Note 8 works 8 ≡ 2 mod 3.
Note 11 works 11 ≡ 2 mod 3.

Maybe there is a pattern here ... I believe we have all the numbers

{. . . ,−7,−4,−1, 2, 5, 8, . . .}.

In fact we have

• 0 ≡ 3 ≡ 6 ≡ 9 = · · · mod 3

• 1 ≡ 4 ≡ 7 ≡ 10 = · · · mod 3, and

• 2 ≡ 5 ≡ 8 ≡ 11 = · · · mod 3.

Notice every number (even negatives) are equivalent to either 0, 1,or 2
mod 3. In fact we have for any number, say 23

?? R 2

3
)
23
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And 23 ≡ 2 mod 3. So mod is just remainder with some algebraic
properties. In general for mod n where n is an number larger than 1 we will
want to reduce the mod to one of the numbers

0, 1, 2, 3 . . . , n− 1

which are the remainders we can see when dividing by n.

Problem 2.3. Reduce the following to numbers in the range 0, 1, 2 . . . , n−1.

11 ≡ mod 7
23 ≡ mod 14
14 ≡ mod 9
−38 ≡ mod 10
−7 ≡ mod 8
14 ≡ mod 7

Note this equivalent, “≡”, is like equals. But it is not equals. It has
some similarities and because “≡” satisfies the following three properties we
call “≡” an equivalence relation.

reflexive. a ≡ a mod n

symmetric. a ≡ b mod n implies b ≡ a mod n, and

transitive. a ≡ b mod n and b ≡ c mod n implies a ≡ c mod n.

So equivalence is like equals, but what about the following operations?
Note 8 ≡ 2 mod 3 and 0 ≡ 3 mod 3. Are the following true?

1. 8 + 0 ≡ 2 + 3 mod 7

2. 8 · 0 ≡ 2 · 3 mod 7

3. 02 ≡ 32 mod 7

4. 20 ≡ 23 mod 7

I get 1, 2 and 3 are true but 4 is false! So equivalence is NOT equals,
but it is certainly like it.

Proposition 2.4. Assume a ≡ b mod n and c ≡ d mod n. Then

• a+ c ≡ b+ d mod n
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• ac ≡ bd mod n and

• ae ≡ be mod n for any e ∈ Z.

Proof. Since a ≡ b mod n and c ≡ d mod n we have that n|(a − b) and
n|(c − d). Thus there are k, l ∈ Z so that (a − b) = kn and (c − d) = ln.
Note (a + c) − (b + d) = (a − b) + (c − d) = kn + ln = (k + l)n. Thus
n|(a+ c)− (b+ d). Therefore

a+ c ≡ b+ d mod n.

The other two are left for you.

2.1.1 Reducing large numbers modulo n

Example: We want to reduce 2100 mod 11. This is a number larger than
the calculator can hold. How can we do it? By repeated squaring we can
easily jump to large exponents.

21 ≡ 2 mod 11
22 ≡ 4 mod 11
24 ≡ 16 ≡ 5 mod 11
28 ≡ (24)2 ≡ 52 ≡ 245 ≡ 3 mod 11

216 ≡ 32 ≡ 9 mod 11
232 ≡ 92 ≡ (−2)2 ≡ 4 mod 11
264 ≡ 42 ≡ 5 mod 11

And then note 100 = 64 + 32 + 4 so

2100 = 26423224 ≡ 5 · 4 · 5 ≡ 20 · 5 ≡ (−2) · 5 ≡ −10 ≡ 1 mod 11.

Problem 2.5. Reduce the following:

• 3100 mod 7, and

• 3100 mod 9.

We have methods even faster then repeated squaring for reducing large
numbers modulo n. Here are two useful tools.

Theorem 2.6 (Fermat’s Little Theorem). Let p be a prime and a ∈ Z so
that gcd(a, p) = 1 then

ap−1 ≡ 1 mod p.
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Corollary 2.7. Let n = pq where p and q are primes and a ∈ Z so that
gcd(a, n) = 1 then

aφ(n) ≡ 1 mod p

where φ(n) = (p− 1)(q − 1).

Example Let’s reduce 3100 mod 7 again using FLT. Note by FLT 36 ≡ 1
mod 7. So

3100 ≡ 36·16+4 ≡ (36)1634 ≡ (1)1634 ≡ 92 ≡ (−2)2 ≡ 4 mod 7.

Easier than the repeated squaring method.

Example Let’s reduce 3100 mod 33 using the corollary. Why do we need
the corollary and why can we not use FLT?

Note by corollary 320 ≡ 1 mod 33 since

φ(33) = φ(3 · 11) = (3− 1)(11− 1).

So
3100 ≡ 320∗5 ≡ (320)5 ≡ (1)5 mod 33.

Again simpler and easier than the repeated squaring method.

Problem 2.8. Reduce the following.

1. 22014 mod 31

2. 32014 mod 23

3. 3130 mod 55

4. Find k so that 3k ≡ 1 mod 31

5. Find k so that 7k ≡ 1 mod 33

3 Chinese Remainder Theorem

The problem
n = ri mod pi (8)

for i = 1,2,3,. . . ,n
The equation has a solution if for all i 6= j we have

gcd(pi, pj) = 1.
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The answer is

n =
p

p1
k1r1 +

p

p2
k2r2 + + · · ·+ p

pn
knrn

where p = p1p2 · · · pn and ki is the solution to

p

pi
ki ≡ 1 mod pi.

And any number equivalent to n mod p is also an answer.
So example find n so that
n = 1 mod 2
n = 2 mod 3
n = 3 mod 7

Solution Note p = p1p2p3 = 2 · 3 · 7 = 42. Now we compute each ki
k1:

p

p1
k1 ≡ 1 mod p1 =

42

2
k1 ≡ 1 mod 2 = 21k1 ≡ 1 mod 2 = (1)k1 = 1 mod 2

So k1 = 1.
k2:

p

p2
k2 ≡

42

3
k1 mod 3 ≡ 14k1 ≡ (2)k1 = 1 mod 3

Trying all the possibilities for k2 = {0, 1, 2, } and we get k2 = 2.
k3:

p

p3
k3 ≡

42

7
k1 mod 7 ≡ ‘6k1 ≡ 1 mod 7

Try all possible remainders for k3 we get k3 = 6.
S0 the answer is

n =
p

p1
k1r1 +

p

p2
k2r2 +

p

p3
k3r3

=
42

2
(1)(1) +

42

3
(2)(2) +

42

7
(6)(3)

= 21 + 56 + 108 = 185

And for the smallest positive answer I get n = 17.

For you all.

10



Problem 3.1 (Ancient Chinese Problem). A band of 17 pirates stole a sack
of gold. When they tried to divide the gold equally between the pirates there
were 3 gold coins remaining. An brawl ensued; on pirate died. So the pirates
tried to divide the gold equally again. Again it did not come out evenlt. There
were 10 gold coins remaining. Another brawl ensued; another dead pirate.
Another attempt to divide the gold and now the gold was divided evenly.

How much gold was there?

4 Cryptography

We will take the alphabet and perform some math on it to disguise the
message. Here is our alphabet.

A B C D E F G H I J K L M
00 01 02 03 04 05 06 07 08 09 10 11 12

N O P Q R S T U V W X Y Z
13 14 15 16 17 18 19 20 21 22 23 24 25

So he will take a message like

plainText =
H E L L O Z E D

07 04 11 11 14 25 04 03
We the encipher the plainText: cipherText = scramble the plainText.
We the decipher the cipherText: plainText = unscramble the cipher-

Text.
We will analyze two methods used some of the most powerful entities in

history: Caesar and modern internet banking.

4.0.2 Caesar’s Cipher

Back to our message.

plainText =
H E L L O Z E D

07 04 11 11 14 25 04 03

We encipher by applying the Caesar’s cipher “+3” (mod 26).

cipherText =
10 07 14 14 17 02 07 06

K H O O R C H G

To decipher we apply “-3” (mod 26).

plainText =
07 04 11 11 14 25 04 03

H E L L O Z E D
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4.0.3 What professor’s bank uses to protect his pennies

The Caesar cipher is of interest for an introductory ciphering technique.
However, it is a bit too simple to be of use today. In fact it was decrypted
by Caesar’s enemies and abandoned by Caesar himself. The next cipher
method we will learn is called RSA and is robust enough that is used by
modern banks today.

RSA contains a few elements in modern cryptography:

• We assume our enemy hackers will know what technique we are using.

• We will publish open for all to see the method and keys to encipher a
message. So anyone can encipher to send to us. But only we should
be able to decipher the message.

SETUP: We will have more numbers involved: n, p, q, e and d

• We pick two primes p and q.

• Compute n=pq; n is our modulus.

• We pick e, the enciphering exponent so that gcd(e, φ(n)) = 1.

• We compute d, the deciphering exponent so that de ≡ 1 mod phi(n).

public key: (n, e) private key: (n, e)
TO ENCIPHER: Break the plainText into blocks P1, P2, P3, · · · where
the max size of the Pi < n. Then

C = P e mod n.

is the cipherText.
TO DECIPHER:

P = Cd mod n.

is the plainText.

Example SETUP:

• We pick two primes p=3 and q=11.

• Compute n=pq = 33. Note n¿26 so we can decode a single letter per
block.

• We pick e = 7, note gcd(7, φ(33)) = 1. I think, wait what was that
φ(33) again?
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• We compute d = 3. Note de ≡ 3 · 7 ≡ 1 mod phi(n).

public key: (33, 7) private key: (33, 3)
TO ENCIPHER: We can use our favorite message

plainText =
H E L L O Z E D

07 04 11 11 14 25 04 03
And our blocks will be P1 = 07, P2 = 04, P3 = 11, · · ·
So to encipher

C1 ≡ P e1 ≡ 077 ≡ · · · ≡ 28 mod 33

C2 ≡ P e2 ≡ 047 ≡ · · · ≡ 16 mod 33

cipherText = 28 16 11 11 20 31 16 9
TO DECIPHER: We use C1 = 28, C2 = 16, C3 = 11, · · · and the formula

P = Cd mod n.

P1 ≡ Cd1 ≡ 283 ≡ (−5)3 ≡ −125 ≡ −125 + 4 ∗ 33 ≡ 07 mod 33

P2 ≡ Cd2 ≡ 163 ≡ · · · ≡ 04 mod 33

Problem 4.1. 1. Make your own RSA setup. Make sure to pick to
primes so that n = pq > 26.

2. Compute n, d and e.

3. Encipher your favorite message. Mine is ”Math is fun”.

4. Decipher it as well.

5 Chinese Remainder Theorem and Pell’s Equa-
tion

We don’t seem to have time, but feel free to stop by and ask ...

13


