Name:

- 1. The following are related:
 - (a) Let $A, B \subseteq \mathbb{R}$ show if $A \subseteq B$ then $\inf(A) \ge \inf(B)$ and $\sup(A) \le \sup(B)$.
 - (b) Let (X, d) be a metric space and let $x \in X$ and $A, B \subseteq X$. Assume $A \subseteq B$. Show $\operatorname{dist}(x, A) \ge \operatorname{dist}(x, B)$.
 - (c) Let (X, d) be a metric space and let $x \in X$ and $A, B \subseteq X$. Show $\operatorname{dist}(x, A \cup B) = \operatorname{inf}(\operatorname{dist}(x, A), \operatorname{dist}(x, B)).$
- 2. Compute the following distances.
 - (a) Consider the metric space (\mathbb{N}, d) where $d(n_1, n_2) = |\frac{1}{n_1} \frac{1}{n_2}|$. Compute d(z, S) where z = 17 is any point in \mathbb{R} and S is the set of evens.
 - (b) Consider the metric space $(X, d) = (\mathbb{R}, e)$ where e is the Euclidean metric. Compute d(z, S) where z is any point in \mathbb{R} and $S = \mathbb{Q}$.
 - (c) Consider the metric space $(X, d) = (\mathbb{R}^2, e)$ where e is the Euclidean metric. Compute d(z, S) where z = (0, 0) and $S = \{(x, y) : y = \frac{2}{x}\}$.
 - (d) Consider the metric space (C[0,1],d) where $d(f,g) = \int_0^1 |f-g|dx$. Compute d(f,S) where f(x) = 0 and $S = \{\sin nx : n \in \mathbb{N}\}.$
- 3. Compute the acc(S) and iso(S) for each of the following:
 - (a) Consider the metric space (\mathbb{N}, d) where $d(n_1, n_2) = |\frac{1}{n_1} \frac{1}{n_2}|$. Let S is the set of evens.
 - (b) Consider the metric space $(X, d) = (\mathbb{R}, e)$ where e is the Euclidean metric. Let S = (0, 1).
 - (c) Consider the metric space $(X, d) = (\mathbb{R}, e)$ where e is the Euclidean metric. Let $S = \mathbb{Q}$.
 - (d) Consider the metric space $(X, d) = (\mathbb{R}^2, e)$ where e is the Euclidean metric. Let $S = \{(x, y) : y \ge \frac{2}{x} \text{ and } x > 0\}.$
 - (e) Consider the metric space (C[0,1],d) where $d(f,g) = \int_0^1 |f-g|dx$. Let $S = \{\sin x/n : n \in \mathbb{N}\}.$
- 4. Do one of the following:
 - (a) Let (X, d) be a metric space and let $S \subseteq X$. Show that

 $z \in \operatorname{acc}(S) \iff$ For all $\varepsilon > 0, D \setminus \{z\} \cap S \neq \emptyset$.

where $D = \{x \in X : d(z, x) < \varepsilon\}.$

(b) Let (X, d) be a metric space and let $S \subseteq X$. Show that

 $z \in iso(S) \iff$ there exists $\varepsilon > 0$ so that $D \setminus \{z\} \cap S = \emptyset$

where $D = \{x \in X : d(z, x) < \varepsilon\}.$

5. Do problems 1,4,5,6 from section 2.