1 Introduction

We will consider the Elliptical Curve given by

$$y^2 \equiv x^3 + ax + b \mod p \tag{1}$$

where p is prime and $4a^3 + 27b^2 \not\equiv 0 \mod p$. We will use the following addition equations below.

Given $P = (x_P, y_P)$ and $Q = (x_Q, y_Q)$ in $EC_p(a, b) \setminus \{O\}$

$$\lambda = \begin{cases} \frac{y_Q - y_P}{x_Q - x_P} \mod p : \text{ if } P \neq Q\\ \frac{3x_P^2 + a}{2y_P} \mod p : \text{ if } P = Q \end{cases}$$
$$x_R = (\lambda^2 - x_P - x_Q) \mod p\\y_R = \lambda(x_P - x_R) - y_P \mod p \end{cases}$$
(2)

where $P + Q = R = (x_R, y_R)$.

Note:

- 1. $O \in EC_p(a, b)$.
- 2. For any $P \in EC_p(a, b)$ we have P + O = O + P = P.
- 3. For any $P = (x_P, y_P) \in EC_p(a, b)$ we have $-P = (x_P, -y_P)$. That is,

$$(x_P, y_P) + (x_P, -y_P) = O.$$

EXAMPLE: For $EC_7(1, 1)$ we consider the equation

$$y^2 \equiv x^3 + x + 1 \mod 7$$

• Note $(0,1) \in EC_7(1,1)$ by noting the following equation holds:

$$y^2 \equiv x^3 + x + 1 \mod 7$$

(1)² $\equiv 0^3 + 0 + 1 \mod 7$.

PROBLEM: Verify $(2, 2) \in EC_7(1, 1)$.

• We will find all points $P = (2, y_P) \in EC_7(1, 1)$. Note if $x_p = 2$ we have that $y^2 \equiv 2^3 + 2 + 1 \equiv 4 \mod 7$. So we need to find all elements in $y_P \in \mathbb{Z}_7$ where $y_P^2 \equiv 4 \mod 7$. I will simply test each element to find there are only two such elements: $y_P = 2$ and $y_P = 5$. So all such points are: (2, 2) and (2, 5).

PROBLEM: Find all points $P = (0, y_P) \in EC_7(1, 1)$. **PROBLEM:** Find all points $P = (3, y_P) \in EC_7(1, 1)$. We will compute (2, 2) + (0, 1). Let P = (2, 2) and Q = (0, 1). Thus

$$\lambda \equiv \frac{1-2}{0-2} \equiv \frac{1}{2} \equiv 4 \mod 7 \text{ since } 2 \cdot 4 \equiv 1 \mod 7.$$

$$x_R \equiv \lambda^2 - x_P - x_Q \mod 7 \equiv 4^2 - 2 - 0 \equiv 0 \mod 7$$

$$y_R \equiv 4(2-0) - 2 \equiv 6 \mod 7.$$
(3)

Thus P + Q = R = (0, 6). **PROBLEM:** Compute (2, 2) + (2, 2) and (2, 2) + (0, 6).

Note $EC_7(1,1) = \{(0,1), (0,6), (2,2), (2,5), O\}$. Also note for our above calculations we see that

$$1 \cdot (2,2) = (2,2)$$

$$2 \cdot (2,2) = (2,2) + (2,2) = (0,1)$$

$$3 \cdot (2,2) = (2,2) + (2,2) + (2,2) = (0,6)$$

$$4 \cdot (2,2) = (2,2) + (2,2) + (2,2) + (2,2) = (2,5)$$

$$5 \cdot (2,2) = (2,2) + (2,2) + (2,2) + (2,2) + (2,2) = O$$
(4)

Definition: We say $n \in \mathbb{N}$ is the order of some $G \in EC_p(a, b)$ if n is the smallest number so that $n \cdot G = O$.

So the order of (2,2) in $EC_7(1,1)$ is 5.

PROBLEM: Compute the order of (0, 1) in $EC_7(1, 1)$.

2 Encipering and Deciphering

How do we use elliptical curves to encipher messages?

- 1. Publicly agree on some G an element of some $EC_p(a, b)$.
- 2. Person A selects some $n_A < n$ where *n* is the order of *G*. And publishes $P_A = n \cdot G$ (note P_A is a point in $EC_p(a, b)$).
- 3. Person B selects some $n_B < n$ where n is the order of G. And publishes $P_B = n \cdot G$ (note P_A is a point in $EC_p(a, b)$).

SUMMARY	
Public	$G, EC_p(a, b), P_A \text{ and } P_B$
Private (for Person A)	n_A
Private (for Person B)	n_B

TO ENCIPHER: Let P_m be a plaintext block represented by a point in $EC_p(a, b)$ that Person A is sending to Person B. Person A chooses, at random, some $k \in \mathbb{N}$. Then Person A computes the pair $C_m = \{k \cdot G, P_m + kP_B\}$ of points in $EC_p(a, b)$. And sends C_m to Person B.

TO DECIPHER: Person B simply computes $P_m + kP_B - n_Bk \cdot G = P_m + kn_B \cdot G - n_Bk \cdot G = P_m$.

EXAMPLE:

a	b	с	d	е	f	g
(0,1)	(0,22)	(1,7)	(1,16)	(3,10)	(3,13)	(4,0)
h	i	j	k	1	m	n
(5,4)	(5,19)	(6,4)	(6,19)	(7, 11)	(7,12)	(9,7)
0	р	q	r	s	t	u
(9,16)	(11,3)	(11, 20)	(12,4)	(12, 19)	(13,7)	(13, 16)
v	W	х	У	Z	unused	unused
(17,3)	(17, 20)	(18,3)	(18,20)	(19,5)	(19,18)	0

We will use $EC_{23}(1,1)$ and G = (0,1) which has order 28 (see calculation worksheet). We will use the following equivalence to the alphabet:

• Person A will select privately $n_A = 7$ and publish $P_A = 7 \cdot (0, 1) = (11, 3)$.

• Person B will select privately $n_B = 11$ and publish $P_B = 11 \cdot (0, 1) = (1, 16)$.

Mission is for Person A to encipher P = "Cake". So

P_1	P_2	P_3	P_4
C	A	K	E
(1, 7)	(0, 1)	(6, 19)	(3, 10)

Person A selects k = 3 at random. So

$$C_{1} = \{k \cdot G, P_{1} + k \cdot P_{B}\}$$

= $\{3 \cdot (0, 1), (1, 7) + 3 \cdot (1, 16)\}$
= $\{(3, 13), (1, 7) + (18, 3)\}$
= $\{(3, 13), (7, 12)\}$
(6)

And C_2 , C_3 and C_4 are computed similarly.

Person A receives C_1, C_2, C_3 and C_4 and deciphers as follows:

$$P_{1} = (P_{1} + k \cdot P_{B}) - n_{B}k \cdot G$$

= (7, 12) - 11 \cdot (3, 13)
= (7, 12) - (18, 3)
= (7, 12) + (18, 20)
= (1, 7) = c
(7)

PROBLEM: Compute C_2 , C_3 and C_4 .