Math 3160 - Practice Test 2

Name:_____

	x_1	$+x_{2}$	$+x_{3}$	= 3
1. Consider the system of linear equations.		x_2	$+5x_{3}$	=1
	x_1		$+x_{3}$	=7

- (a) Write the system as a matrix multiplication $A\mathbf{x} = \mathbf{b}$
- (b) Solve by finding A^{-1} .

		$2x_1$	$+4x_{2}$	$+x_{3}$	= 3
2.	Use Cramer's Rule to solve.		$5x_2$	$+2x_{3}$	= 0
		x_1	+	$+x_{3}$	= 8

3. Define the following vectors

Define the following vectors

$$\mathbf{u} = \begin{bmatrix} 1\\1\\2\\3 \end{bmatrix} \mathbf{v} = \begin{bmatrix} 0\\1\\0\\-1 \end{bmatrix} \mathbf{w} = \begin{bmatrix} 3\\6\\6\\6 \end{bmatrix} \mathbf{b} = \begin{bmatrix} 1\\-1\\0\\3 \end{bmatrix}$$

(a) Is the list of vectors $\mathbf{u},\,\mathbf{v},\,\mathbf{w}$ linearly independent?

(b) Is the vector ${\bf b}$ in the span of ${\bf u},\,{\bf v},\,{\bf w}$?

- 4. Define the following $A = \begin{bmatrix} 1 & 0 & 1 & 1 \\ -1 & 2 & 1 & 1 \\ 0 & 2 & 0 & 0 \\ 0 & 3 & 0 & 0 \end{bmatrix} \mathbf{c} = \begin{bmatrix} 2 \\ -1 \\ 0 \\ 1 \end{bmatrix}$
 - (a) A is a transformation from $\mathbb{R}^n \to \mathbb{R}^m$. Find n, m. What is the dimension of the domain?
 - (b) Is $\mathbf{c} \in COL(A)$?
 - (c) Compute the column space for A, Write as the span of a basis.

- (d) Compute the null space for A, Write as the span of a basis.
- (e) Compute Rank and Nullity of A. Compare to your answer for 4a.

5. Solve for any **x** so that $A\mathbf{x} = \mathbf{x}$ where $A = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix} \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.