Math 3160 - Practice Final

- 1. Let $\mathbf{v} = \langle 1, -4 \rangle$, $\mathbf{w} = \langle 2, 5 \rangle$
 - (a) Graph the two vectors \mathbf{v} , \mathbf{w} and $\mathbf{v} + \mathbf{w}$
 - (b) Compute the angle between the two vectors \mathbf{v}, \mathbf{w}
 - (c) Compute the area formed by the parallelogram formed by the two vectors v and w.
- 2. Let $\mathbf{v} = \langle 1, -4, 3 \rangle$, $\mathbf{w} = \langle 1, 2, 5 \rangle$
 - (a) Compute the angle between the two vectors \mathbf{v}, \mathbf{w}
 - (b) Compute the area formed by the parallelogram formed by the two vectors v and w.
 - (c) Find a single vector simultaneously perpendicular to \mathbf{v} and \mathbf{w} . of all vectors perpendicular to \mathbf{v} .
- 3. Let $\mathbf{v} = \langle 1, 1, 3 \rangle$, $\mathbf{w} = \langle 1, 1, 5 \rangle$.
 - (a) Compute the angle between the two vectors \mathbf{v}, \mathbf{w}
 - (b) Compute the area formed by the parallelogram formed by the two vectors v and w.
- 4. Solve the system of linear equations three different ways.

- (a) row reduction
- (b) Using an inverse matrix
- (c) Cramer's Rule

5. Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 1 \\ 0 & 2 & 0 \end{bmatrix}$$

Solve $A\mathbf{x} = \mathbf{x}$.

6. Write the definition of W is linear subspace of \mathbb{R}^n