Math 2320 - Practice Test 1

1 Computing the Integral with the Definition

- 1. Approximate $\int_0^1 2x^2 + 1 \, dx$ using three rectangles and the right hand method.
- 2. Compute $\int_0^1 2x^2 + 1 \, dx$ (use the definition and not the FTC).
- 3. Compute $\int_{-1}^{2} 1 4x \, dx$ (use the definition and not the FTC).

2 Fundamental Theorem of Calculus

1. Compute the following derivatives using the FTC part I.

(a)
$$\frac{d}{dx} \left[\int_{1}^{x} f(t) dt \right]$$

(b) $\frac{d}{dx} \left[\int_{1}^{x^{2}} f(t) dt \right]$
(c) $\frac{d}{dx} \left[\int_{x}^{3x-1} \sin(t-1) dt \right]$

2. Compute the following integrals using the FTC part II (do they look familiar).

(a)
$$\int_0^1 2x^2 + 1 \, dx$$

(b) $\int_{-1}^2 1 - 4x \, dx$

3 Integration with Substitution

1.
$$\int x^2 (x^3 + 1)^{2/3} dx$$

2. $\int x^2 (x^3 + 1)^{-1} dx$
3. $\int x^2 \sin(x^3) dx$

4.
$$\int \cos(2x) \sin(2x) dx$$

5.
$$\int \tan(3x) \sec^2(3x) dx$$

6.
$$\int \frac{e^x}{1 + e^x} dx$$

7.
$$\int \frac{e^x}{1 + e^{(2x)}} dx$$

8.
$$\int \frac{\ln(x) + 1}{x} dx$$

9.
$$\int \sin^3(x) dx$$

4 Applications of the integral: Average Value and the MVT and Acceleration, Velocity and Displacement

- 1. Find the average value of the function $f(x) = x^3$ over the interval [a,b] = [0,3].
- 2. Find the average value of the function $f(x) = x^{2/3}$ over the interval [a,b] = [-1,1].
- 3. For function $f(x) = x^3$ over the interval [a, b] = [0, 3] find the c from the MVT.
- 4. For function $f(x) = x^{2/3}$ over the interval [a, b] = [-1, 1] find the c from the MVT.
- 5. Let $a(t) = t^2 1$, v(0) = 1 and s(0) = 8. Find the function s(t).
- 6. Let $a(t) = 8e^{2t}$, v(0) = 20 and s(0) = 40. Find the function s(t).
- 7. Let a(t) = -9.8, v(0) = 40 and s(0) = 0. Find position at the time t = 3.

5 Area and Volume

- 1. Let $f(x) = x^3$. Find the area between the curve and the x-axis over the interval [-1, 2].
- 2. Find the area between the functions $f(x) = x^3$ and f(x) = 9x in the first quadrant.
- 3. Find the area between the functions $x = y^2$ and y = -2 + x.
- 4. Find the area between the functions $f(x) = \sin(x)$, $y = \cos(x)$, x = 0and $x = \pi/4$.
- 5. Define the region by $y = x^2$, x = 0 and y = 7 in the first quadrant. Find the volume of this region by revolving the region around the *x*-axis (use Discs).
- 6. Define the region by $y = x^2$, x = 0 and y = 7 in the first quadrant. Find the volume of this region by revolving the region around the y-axis (use Discs).
- 7. Define the region by $y = x^2$, x = 0 and y = 7 in the first quadrant. Find the volume of this region by revolving the region around the x-axis (use Shells).
- 8. Define the region by $y = x^2$, x = 0 and y = 7 in the first quadrant. Find the volume of this region by revolving the region around the y-axis (use Shells).
- 9. Define the region by $y = \ln(x)$, x = 0, y = -1 and y = 2. Find the volume of this region by revolving the region around the y-axis.
- 10. Define the region by $y = x^2/8$, y = 2 x and x = 0 in the first quadrant. Find the volume of this region by revolving the region around the y-axis.
- 11. Define the region by $y = \frac{1}{x+1}$, y = 1 x/3 and x = 0. Find the volume of this region by revolving the region around the x-axis.