Math 2310 - Practice Test 2

- Derivatives, derivatives, derivatives.
- There will be many straight "compute this derivative" type problems. Study the many assigned problems: in-class and homework. There will be question(s) about finding the equation of a tangent line.
- There will be a graph of a function and you will be asked to graph its derivative (and mabe the second derivative).
- There will be a related rates problem. Study these 3.10: 7,9,15,17,20,21,32,36,42.
- Here are some representative problems it would be good to redo the quizzes as well.

1 Sample Derivatives

- 1. $\frac{d}{dx}[\tan(x)\cos(x)]$
- 2. $\frac{d}{dx} \left[\frac{\tan(x)}{\cos(x)} \right]$
- 3. $\frac{d}{dx}[\tan(x) + \tan^{-1}(x)]$

4.
$$\frac{d}{dx}[x^2 + 2\sec(x^3)]$$

5. $\frac{d}{dx}[\tan(\sec(x^3))]$

2 Implicit Differentiation

Find the Derivative.

- 1. $y = xy^2 e^{x^2} + \ln(x^3 + y)$ 2. $y = \tan^{-1}(x)$
- 3. $y = cos^2(xy)$
- 4. $x^2y = e^{xy}$
- 5. $y + y^3 x^2 = 7$ Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.
- 6. Find the line tangent to the function $x^2 + y^2 = 4$ where x = 1. Note there are two possible answers to this question.

3 Logarithmic Differentiation

- 1. $y = x^{x^3+1}$
- 2. $y = [\tan(x)]^{3x}$
- 3. $y = 2^x$
- 4. $y = x^{\ln(x)}$

5. Find the line tangent to the function $f(x) = x^{\ln(x)}$ where x = e.

Our list of derivatives that we have memorized.	
$\begin{bmatrix} \frac{d}{dx}[x^n] = nx^{n-1} \\ \frac{d}{dx}[x(x)] = 1 \end{bmatrix}$	
$\frac{\frac{d}{dx}[\ln(x)] = \frac{1}{x}}{1}$	
$\frac{a}{dx}[\sin^{-1}(x)] = \frac{1}{\sqrt{1-x^2}}$	
$\frac{d}{dx}[\cos^{-1}(x)] = \frac{-1}{\sqrt{1-x^2}}$	
$\frac{d}{dx}[\tan^{-1}(x)] = \frac{1}{1+x^2}$	
$\frac{\frac{d}{dx}[\tan^{-1}(x)] = \frac{1}{1+x^2}}{\frac{\frac{d}{dx}[\cot^{-1}(x)] = \frac{-1}{1+x^2}}{\frac{d}{1+x^2}}}$	
$\frac{1}{dx} \begin{bmatrix} \sec & (x) \end{bmatrix} = \frac{1}{ x \sqrt{x^2 - 1}}$	
$\frac{d}{dx}[\csc^{-1}(x)] = \frac{-1}{ x \sqrt{x^2 - 1}}$	

Our list of derivatives that we have memorized: