
Task: In each of these two beautiful parks, try to find a path (to walk) that
uses each bridge once and exactly once. Start with the park on the right
first. (The blue denotes a river that contains alligators, so no swimming
allowed!) Can you find a path that starts on one of the two islands?
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Introduction to Topology and its Applications to
Complex Data

Yogesh More
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I will introduce the branch of mathematics called Topology through some
of the puzzles that first gave rise to the subject 100 to 200 years ago.
These puzzles illustrate some ideas topologists started exploring around
1900. These classical ideas have recently found applications in the analysis
of complex data.
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Key aspects of Topology

Three key aspects of Topology are:

1 deformation invariance

2 compressed representation (e.g. graphs or networks)

3 discrete invariants (e.g, numbers, groups, rings, ...)
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What is topology?

Topology is the mathematical study of the properties that are preserved
through deformations, twistings, and stretchings of objects. Tearing,
however, is not allowed. So topology focuses on the qualitative aspects of
objects or shapes. (http://mathworld.wolfram.com/Topology.html)

Old joke: ”A topologist is someone who cannot distinguish between a
doughnut and a coffee cup”

Topology is not topography - the field of geoscience and planetary science
comprising the study of surface shape and features of the Earth and other
observable astronomical objects
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History of topology and roadmap for this talk

1736: Leonhard Euler’s paper on the Seven Bridges of Konigsberg

1863: Mobius gave a classification of “two-sided” surfaces: every such
surface can be deformed to one of the following g holed surfaces:

1871: To any shape X , Betti associated Betti numbers
b0(X ), b1(X ), b2(X ), b3(X ), . . .. These numbers measure the
connectedness, number of loops, holes, and higher dimensional
analogs of holes in the shape X .

Betti numbers of a (solid) 3 dimensional ball D3 (e.g dodgeball, but
not a soccer ball) are b0 = 1, b1 = 0, b2 = 0.

Betti numbers of the 2-sphere S2 (e.g soccer ball or football, but not
a dodgeball) are b0 = 1, b1 = 0, b2 = 1.
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History of topology and roadmap for this talk

1895: Henri Poincare:

provided new foundation to Betti numbers by introducing homology
theory
asked whether Betti numbers are enough to specify the shape (up to
homeomorphism)
Found the answer was no; revised question to whether contractibility of
loops is enough to distinguish the 3-sphere S3 (Poincare conjecture,
took 100 years to prove the answer is yes )

1925: Emmy Noether shifted the focus from Betti numbers to
homology groups

2000-present: Gunnar Carlsson and others are using homology theory
to analyse complex data arising in all sort of situations such as cancer
research, drug discovery, financial-market research, voting patterns,
. . .
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Bridges of Konigsberg (now called Kaliningrad, in Russia)

Photo credit: Vladimir Sedach, Wikipedia

Yogesh More 8 / 63



Bridges of Konigsberg

Image credit: Bogdan Giuc, Wikipedia

Konigsberg Bridge problem: Find a path that crosses each bridge exactly
once. It doesn’t have the start and end at the same place. Such a path is
now called an Euler path.
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Task: Try to find an Euler path in each of these two beautiful parks. Start
with the park on the right first.
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Here is one solution to the map that was on the right:

The map that was on the left has no solution. But why?
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Euler’s solution

Form a graph:
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Euler’s solution

Form a graph, label each vertex by its degree:
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Euler’s solution

Each time we enter and exit a vertex, we use two of the edges
(basically).So for any vertex that is not the starting and ending point of an
Euler path, we end up using an even number of edges. So since we want
to use all edges, all vertices, except possibly the starting and ending
points, must have even degree.

Theorem (Euler, 1736)

A graph has an Euler path if and only if at most two vertices have
odd degree.

A Bridge problem has an Euler path if and only if at most two of the
land masses have an odd number of bridges.

So for Konigsberg in particular, there is no such path.
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Key aspects of topology

Our three key aspects of topology, applied to Konigberg bridge problem:

1 deformation invariance: size and placement of land masses and
bridges didn’t matter

2 compressed representation: graphs or networks

3 discrete invariant (e.g number): degree of each vertex (number of
bridges on each land mass)
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Magic Trick

Draw any connected graph, tell me the number of vertices V and edges E ,
and I will tell you the number H of “holes” (or bounded regions) it has.
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The magic formula

H = E − V + 1

This formula comes from a bigger story.
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Platonic solids

Table credit: Wikipedia
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Platonic solids: Euler characteristic

Table credit: Wikipedia
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Soccer ball, or truncated icosahedron

Photo credit: Aaron Rotenberg, Wikipedia

12 pentagonal faces, 20 hexagonal faces
V = 60,E = 90,F = 12 + 20 = 32
V − E + F = 2
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Euler’s Polyhedron Formula

Theorem (Euler’s Polyhedron Formula)

For any decomposition of a spherical object into V vertices, E edges, and
F faces, we have V − E + F = 2

Yogesh More 21 / 63



Back to magic trick

How to apply Euler’s polyhedron formula to our graph?
We need a sphere...
Trick: bend the paper into a sphere!
Then the unbounded region of the plane becomes a (big) face. Hence the
total number of faces is one more than the number of holes in our graph:

F = H + 1

Plugging this into Euler’s formula V − E + F = 2 we get

V − E + (H + 1) = 2

Solving for H gives

H = E − V + 1
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Euler’s formula for torus instead of a sphere

What if we replace the sphere with a torus?
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Euler’s formula for surface with 2 holes

What if we replace the sphere with a surface wth 2-holes?
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Euler’s formula for a surface with g holes

Theorem

For a surface with g -holes,

V − E + F = 2− 2g

The quantity V − E + F is called the Euler characteristic. More generally,
the Euler characteristic χ(X ) of any shape X is defined to be the
alternating sum of the Betti numbers

χ(X ) = b0 − b1 + b2 − b3 + · · ·
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Recall our three key aspects of topology:

1 deformation invariance: the value of V − E + F is the same for
tetrahedron, soccer ball, or any triangulation of a spherical surface

2 compressed representation: we can represent a sphere by (the exterior
of) a tetrahedron

3 discrete invariants: V − E + F , g
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Simplices: A topologist’s building blocks
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Betti numbers

Any shape has Betti numbers, b0, b1, b2, . . . ,. The number bk is roughly a
measure of the number of k + 1-dimensional holes. The first few Betti
numbers have the following definitions for 0-dimensional, 1-dimensional,
and 2-dimensional simplicial complexes:

b0 is the number of connected components

b1 is the number of ”circular” holes

b2 is the number of two-dimensional ”voids” or ”cavities”

In higher dimension we lose the ability to visualize geometry, but
b3, b4, · · · can be defined algebraically.
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Example of Betti numbers

Betti numbers of a (solid) 3 dimensional ball D3 (e.g dodgeball, but not a
soccer ball) are b0 = 1, b1 = 0, b2 = 0.

Betti numbers of the 2-sphere S2 (e.g soccer ball or football, but not a
dodgeball) are b0 = 1, b1 = 0, b2 = 1.

Image credit: Salix alba, Wikipedia
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Example of Betti numbers

Image credit: Krishnavedala, Wikipedia

Betti numbers of a (hollow) torus are b0 = 1, b1 = 2, b2 = 1.

Betti numbers of a solid torus (donut!) are b0 = 1, b1 = 1, b2 = 0.

Betti numbers of the surface Xg with g -holes are
b0(Xg ) = 1, b1(Xg ) = 2g , b2(Xg ) = 1.
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Emmy Noether (1882-1935)

Photo credit: Bryn Mawr College Archives, Wikipedia

Emmy Noether was one of the leading mathematicians of her time.
She developed the theories of rings, fields, and algebras (MA 5120
Abstract Algebra).

One of her insights was to shift everyone’s focus from Betti numbers
bk(X ) of a shape X to more complicated algebraic objects called the
homology groups Hk(X )

Betti numbers can be recovered as the size the homology groups:

bk(X ) = rank Hk(X )

Recall we said discrete invariants can be numbers, groups, rings, ...
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Emmy Noether (1882-1935)

In the spring of 1915, Noether was invited to the University of
Gottingen by David Hilbert and Felix Klein.

Their effort to recruit her, however, was blocked by some of the
faculty. One faculty member protested: ”What will our soldiers think
when they return [from WW I] to the university and find that they are
required to learn at the feet of a woman?”

Hilbert responded with indignation, stating, ”I do not see that the sex
of the candidate is an argument against her admission as privatdozent
[subordinate teaching duties]. After all, we are a university, not a
bath house.”

During her first years teaching at Gottingen she did not have an
official position and was not paid; her family paid for her room and
board and supported her academic work. Her lectures often were
advertised under Hilbert’s name.
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Emmy Noether (1882-1935)

1933 Hitler, Nazi party, came to power. Noether, who was Jewish,
was fired from her position.

1933 Noether moved to Bryn Mawr College (a women’s liberal arts
college near Philadelphia)

Noether died in 1935 of cancer

Noether provided invaluable methods of abstract conceptualization.
Van der Waerden said that Noether’s originality was“absolute beyond
comparison.”

Shapes
Betti //

Homology %%

Numbers

Groups

rank

88
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Simplicial Homology (1900s)

Let X be our shape, e.g a sphere. Divide it up into simplices in any way
you like (deformation invariance, compressed representation).

Let Ck(X ) denote the (free abelian group generated by) k-simplices.

Define the boundary map (or function) ∂k : Ck(X )→ Ck−1(X ) to be
the map taking a k-simplex σ as input and giving the alternating sum
of its boundary as output
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Simplicial homology

Putting these groups and maps together we get a chain complex

· · · → C3(X )
∂3→ C2(X )

∂2→ C1(X )
∂1→ C0(X )→ 0

The simplicial homology group Hk(X ) are the “cycles modulo
boundaries”:

cycles are elements of Ck(X ) that ∂k maps to 0
boundaries are elements of Ck(X ) that equal ∂k+1σ for some σ ∈ Ck+1
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Simplicial homology

Computing the simplicial homology groups Hk(X ) “by hand” can get
complicated quickly, so mathematicians have found other equivalent
definitions (cellular homology, singular homology).

Mathematicians developed these other equivalent theories from
1900-1930

But computing simplicial homology is relatively easy for a computer
(foreshadowing).
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Little blurb about my research interests

Simplicial/singular/cellular homology has been extensively studied.
But it turns out to be just one way of going from

Shapes→ Groups

1950s, 1960s, 1970s mathematicians started to find other sorts of
(co)-homology theories:

K-theory
Cobordism theories
Morava K-theories Kn,p, one for every nonnegative integer n, and and
prime number p
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And now for something completely different

This talk is getting too technical, so let’s change directions...
from the Math circa 1900 to Art circa 1900!
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Sunday Afternoon on the Island of La Grande Jatte

Image credit: Georges Seurat - Art Institute of Chicago, Wikipedia

“Some say they see poetry in my painting, I see only science.”
-Georges Seurat
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Sunday Afternoon on the Island of La Grande Jatte

Photo credit: Jennifer Tharp,
Flickr

Yogesh More 40 / 63



Sunday Afternoon on the Island of La Grande Jatte

Photo credit: Jennifer Tharp, Flickr
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Sunday Afternoon on the Island of La Grande Jatte

Photo credit: Tom S., Wikipedia

Georges Seurat’s most famous work, and is an example of pointillism.
7× 10 feet in size, now exhibited in the Art Institute of Chicago
Took two years to paint (1884-1886)
Estimated to consist of approximately 3,456,000 dots (or so says a
page on internet)
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Your brain is a topological data analysis machine

Image credit: Georges Seurat - Art Institute of Chicago, Wikipedia

Your brain can:

extract shape from millions of dots (or much fewer than a million
dots)

extract meaning from the shape

What’s the difference between the two?
Very big difference. The same as the difference between taking a
reservation and holding a reservation. Seinfeld Clip
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Data

Studying data has become an extremely hot topic within the past
decade:

Data science, machine learning, data analytics, etc.

Data can often be represented as points (in the xy-plane, or in Rn for
some n)

There are many tools to study data: Average, Linear regression,
Principal Component Analysis (PCA), Clustering ...
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Data is messy

Data doesn’t always form a straight line. It can take various shapes:

One could try to develop or find a regression model for each type of
shape.

But that’s not practical since there are an immense variety of possible
shapes

Instead, let’s find a flexible way of dealing with all shapes. That’s
where topology comes in.
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Topology is back

New idea: use topology to construct a set of tools to find shape in
data.

Topological Data Analysis, used in the work Gunnar Carlsson
(Stanford) and others 2000-present

Persistent homology, popularized by Robert Ghrist (U Penn)
2000-present

Carlsson co-founded a company, Ayasdi that applies these techniques
to various business sectors: drug discovery, oil and gas exploration,
and financial-market research

Caution: Find meaning (if any) in the shape is a separate task,
requiring domain expertise.

Yogesh More 46 / 63



Data and Topology

Why study data using topology?
Aspects of Data:

subject to noise (e.g
experimental error)

can be large (e.g millions of
data points)

we want to extract some
information from the data

Aspects of Topology

deformation invariance: not
sensitive to minor variations

compressed representation

discrete invariants:
”topological statistics”
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Topological Data Analysis applied to breast cancer research

In 2010, Gunnar Carlsson, et. al. [Lum] applied a Topological Data
Analysis to two old breast cancer databases and within minutes
discovered something new:

“We identified a previously unknown subgroup of oncology survivors
who exhibited genetic indicators of poor survivors [low ESR1 levels].
This will allow us to better understand this group and potentially help
improve survival rates for this disease, which might potentially help us
find a cure.”

-Devi Ramanan, Ayasdi head of collaboration [Ram]

“These insights had eluded more traditional study for more than a
decade. Using Topological Data Analysis, Ayasdi was to discover new
insights within minutes.” [Sym]
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Breast cancer research results [Lum]

Image credit: [Lum]
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Breast cancer research results [Lum]

Image credit: [Lum]

Raw data was gene expression levels of 1500 genes, in 272 tumors. So
272 points in R1500. Define a notion of distance between two points
in R1500

Use a filter function f to put tumors into overlapping
bins/boxes/groups f −1(Ui )
Each node represents a cluster of tumors in a bin
Nodes are connected if and only if they have at least one tumor in
common
Coordinates or placement of any individual node has no meaningYogesh More 50 / 63



Topological Data Analysis Recipe, by toy example

Toy example presented in [Aya].
Step 0: Raw Data

Goal: Get a compressed representation (i.e. graph or network) that
captures the shape

Yogesh More 51 / 63



Topological Data Analysis Recipe, by toy example

Goal: Get a compressed representation (i.e. graph or network) that
captures the shape
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Topological Data Analysis Recipe

Step 1: Apply filter function f

In our toy example, f takes each data point and returns its y -coordinate.
(In the breast cancer study, the filter functor took each data point and
returned the distance to the furthest data point. This is called the
L∞-centrality function. The choice of filter function affects the output
significantly.)
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Topological Data Analysis Recipe

Step 2: Cover the target of the filter function by intervals.

The size and number of the intervals can be varied.
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Topological Data Analysis Recipe

Step 3: Take the inverse image under f of each interval Ui , to create bins
of data points.

There are four bins of data, only two are shown on this slide.
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Topological Data Analysis Recipe

Step 3: Take the inverse image under f of each interval Ui , to create bins
of data points. Here are all four bins.
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Topological Data Analysis Recipe

Step 4: Apply a clustering algorithm to each bin
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Topological Data Analysis Recipe

Step 5: Connect two nodes if they both represent a common data point
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Topological Data Analysis Recipe

Step 5: Connect two nodes if they both represent a common data point
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Topological Data Analysis Recipe

Step 6: Color the nodes via functions of interest
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Topological Data Analysis Recipe

Step 7 (The hardest and most important): Find meaning!

Check if your findings are consistent with the experience of domain
experts

Be willing to consider the possibility that TDA might not be give
anything useful, in which case use other tools (persistent homology,
other tools from statistics)
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The End

Don’t forget to hold the
reservation!
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